Patents by Inventor Roland Denzler

Roland Denzler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11349142
    Abstract: A fuel cell module includes fuel cells, a gas supply system, a first accumulator, a second accumulator, and power connection. The fuel cells are arranged in a cell stack having a first axial end and a second axial end. The gas supply system is configured to supply gas for the operation of the fuel cells, the fuel cells being stacked in an axial direction. The first accumulator is arranged at the first axial end of the cell stack. The second accumulator is arranged at the second axial end of the cell stack. The power connection is electrically conductively connected to the second accumulator, and is arranged at the gas supply system. The cell stack is arranged within an insulation sheath and the gas supply system is arranged partly outside the insulation sheath and the power connection is arranged outside the insulation sheath.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: May 31, 2022
    Assignee: HEXIS AG
    Inventors: Roland Denzler, Andreas Mai, Fabian Brogle
  • Patent number: 11165070
    Abstract: A method for producing a metallic interconnector for a fuel cell stack, including an air guiding surface with a first gas distributor structure and a fuel gas guiding surface with a second gas distributor structure, the first gas distributor structure and the second gas distributor structure each formed by grooves and webs, includes providing a sheet metal blank, forming the sheet metal blank by a plastic molding process, the first gas distributor structure and the second gas distributor structure being formed in such a manner that the grooves and webs of the first gas distributor structure are arranged complementary to the grooves and webs of the second gas distributor structure at a predeterminable percentage of area of the air guiding surface and the fuel gas guiding surface of at least 50% and at most 99%.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: November 2, 2021
    Assignee: HEXIS AG
    Inventors: Andreas Mai, Roland Denzler, Fleischhauer Felix
  • Patent number: 11069906
    Abstract: A fuel cell module includes fuel cells and an air supply system. The fuel cells are arranged in a cell stack. The air supply system is configured to supply air into an air distribution space for operating or cooling the fuel cells. The fuel cells are stacked in an axial direction. The air supply system is configured such that cooling results due to the air supplied to the fuel cells not being of uniform strength in the axial direction. The air supply system is arranged completely radially outside the cell stack.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: July 20, 2021
    Assignee: HEXIS AG
    Inventors: Roland Denzler, Andreas Mai, Christoph Meier
  • Patent number: 10505207
    Abstract: A method for the combined controlled regulation of fuel gas-oxygen carriers of a gas operated energy converter plant (15), in particular of a fuel cell plant, is provided in which the mass or volume through flow of the fuel gas (1) and/or of the oxygen carrier (2) is detected in order to regulate the mixing ratio (r) of fuel gas to oxygen carrier. In the method at least two physical parameters of the fuel gas are additionally determined using a micro thermal sensor (3.1, 3.2), for example, the mass flow and/or volume through flow of the fuel gas and the thermal conductivity or thermal capacity of the fuel gas are determined and a desired value for the mixing ratio is determined from the physical parameters which depends on the fuel gas or on the composition of the fuel gas, and which desired value is used for the regulation of the mixing ratio.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: December 10, 2019
    Assignee: Hexis AG
    Inventors: Roland Denzler, Philippe Pretre, Andreas Kempe
  • Patent number: 10411276
    Abstract: A device in which an environmental air flow is monitored by a monitoring element and in which a natural gas flow is interrupted by a shut-off element on recognition of an insufficient environmental air flow. To allow a continuous operation of the fuel cell battery the monitoring element is short-circuited by a bridging device and that its operability can thus be checked without the environmental air flow having to be interrupted. This allows a permanent operation of the fuel cell battery.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: September 10, 2019
    Assignee: HEXIS AG
    Inventors: Roland Denzler, Ralf Kober, Thomas Gamper
  • Publication number: 20180269495
    Abstract: A method for producing a metallic interconnector for a fuel cell stack, including an air guiding surface with a first gas distributor structure and a fuel gas guiding surface with a second gas distributor structure, the first gas distributor structure and the second gas distributor structure each formed by grooves and webs, includes providing a sheet metal blank, forming the sheet metal blank by a plastic molding process, the first gas distributor structure and the second gas distributor structure being formed in such a manner that the grooves and webs of the first gas distributor structure are arranged complementary to the grooves and webs of the second gas distributor structure at a predeterminable percentage of area of the air guiding surface and the fuel gas guiding surface of at least 50% and at most 99%.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 20, 2018
    Inventors: Andreas MAI, Roland DENZLER, Fleischhauer FELIX
  • Publication number: 20160181632
    Abstract: A fuel cell module includes fuel cells and an air supply system. The fuel cells are arranged in a cell stack. The air supply system is configured to supply air into an air distribution space for operating or cooling the fuel cells. The fuel cells are stacked in an axial direction. The air supply system is configured such that cooling results due to the air supplied to the fuel cells not being of uniform strength in the axial direction. The air supply system is arranged completely radially outside the cell stack.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 23, 2016
    Inventors: Roland DENZLER, Andreas MAI, Christoph MEIER
  • Publication number: 20160181649
    Abstract: A fuel cell module includes fuel cells, a gas supply system, a first accumulator, a second accumulator, and power connection. The fuel cells are arranged in a cell stack having a first axial end and a second axial end. The gas supply system is configured to supply gas for the operation of the fuel cells, the fuel cells being stacked in an axial direction. The first accumulator is arranged at the first axial end of the cell stack. The second accumulator is arranged at the second axial end of the cell stack. The power connection is electrically conductively connected to the second accumulator, and is arranged at the gas supply system. The cell stack is arranged within an insulation sheath and the gas supply system is arranged partly outside the insulation sheath and the power connection is arranged outside the insulation sheath.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 23, 2016
    Inventors: Roland DENZLER, Andreas MAI, Fabian BROGLE
  • Publication number: 20160141649
    Abstract: A device in which an environmental air flow is monitored by a monitoring element and in which a natural gas flow is interrupted by a shut-off element on recognition of an insufficient environmental air flow. To allow a continuous operation of the fuel cell battery the monitoring element is short-circuited by a bridging device and that its operability can thus be checked without the environmental air flow having to be interrupted. This allows a permanent operation of the fuel cell battery.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 19, 2016
    Inventors: Roland DENZLER, Ralf KOBER, Thomas GAMPER
  • Publication number: 20140356751
    Abstract: A method for the combined controlled regulation of fuel gas-oxygen carriers of a gas operated energy converter plant (15), in particular of a fuel cell plant, is provided in which the mass or volume through flow of the fuel gas (1) and/or of the oxygen carrier (2) is detected in order to regulate the mixing ratio (r) of fuel gas to oxygen carrier. In the method at least two physical parameters of the fuel gas are additionally determined using a micro thermal sensor (3.1, 3.2), for example, the mass flow and/or volume through flow of the fuel gas and the thermal conductivity or thermal capacity of the fuel gas are determined and a desired value for the mixing ratio is determined from the physical parameters which depends on the fuel gas or on the composition of the fuel gas, and which desired value is used for the regulation of the mixing ratio.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicants: Hexis AG, MEMS AG
    Inventors: Roland Denzler, Philippe Pretre, Andreas Kempe
  • Patent number: 8586251
    Abstract: A fuel cell system (1) having a cell stack (2) for the carrying out of electrochemical reactions is provided which is provided with inlets (3a, 3b) for an oxidant (5) and for fuel gas (6) and with outlets (4a, 4b) for exhaust gases (7a, 7b). The fuel cell system (1) additionally includes an apparatus (10) having a gas-permeable structure which contains a substance which reacts with gaseous chromium species, wherein the apparatus is in communication with at least one of the outlets to direct exhaust gases through the apparatus and to separate chromium species which are carried along by the exhaust gases.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: November 19, 2013
    Assignee: Hexis AG
    Inventors: Andreas Mai, Dirk Haberstock, Roland Denzler, Josef Sfeir
  • Patent number: 8507149
    Abstract: The plant (1) with high-temperature fuel cells (7) includes a clamping device for a cell stack (5) and axially aligned chambers (7) for an after-burning. Clamping bars (60) of the clamping device are disposed between the afterburning chambers. Exhaust gas passages connect the after-burning chambers to a heat exchanger (20a) acting as a heat sink. A clamping element (62) of the clamping device is in heat conducting connection with the heat exchanger. Compression springs (63) are respectively mounted on the clamping bars between an end of the clamping bar and a lug (622) of the clamping element. In this arrangement they exert a clamping force onto the clamping bars. The compression springs are shielded by the clamping element from the cell stack so that, thanks to the heat sink, the compression springs are only exposed to moderate temperature at which the clamping force is maintained.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: August 13, 2013
    Assignee: Hexis AG
    Inventors: Alexander Schuler, Dirk Haberstock, Roland Denzler, Michael Tamas, Jeannette Clifford
  • Publication number: 20110200894
    Abstract: A fuel cell system (1) having a cell stack (2) for the carrying out of electrochemical reactions is provided which is provided with inlets (3a, 3b) for an oxidant (5) and for fuel gas (6) and with outlets (4a, 4b) for exhaust gases (7a, 7b). The fuel cell system (1) additionally includes an apparatus (10) having a gas-permeable structure which contains a substance which reacts with gaseous chromium species, wherein the apparatus is in communication with at least one of the outlets to direct exhaust gases through the apparatus and to separate chromium species which are carried along by the exhaust gases.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 18, 2011
    Applicant: Hexis AG
    Inventors: Andreas Mai, Dirk Haberstock, Roland Denzler, Josef Sfeir
  • Publication number: 20090214914
    Abstract: The plant (1) with high-temperature fuel cells (7) includes a clamping device for a cell stack (5) and axially aligned chambers (7) for an after-burning. Clamping bars (60) of the clamping device are disposed between the afterburning chambers. Exhaust gas passages connect the after-burning chambers to a heat exchanger (20a) acting as a heat sink. A clamping element (62) of the clamping device is in heat conducting connection with the heat exchanger. Compression springs (63) are respectively mounted on the clamping bars between an end of the clamping bar and a lug (622) of the clamping element. In this arrangement they exert a clamping force onto the clamping bars. The compression springs are shielded by the clamping element from the cell stack so that, thanks to the heat sink, the compression springs are only exposed to moderate temperature at which the clamping force is maintained.
    Type: Application
    Filed: February 14, 2006
    Publication date: August 27, 2009
    Applicant: Sulzer Hexis AG
    Inventors: Alexander Schuler, Dirk Haberstock, Roland Denzler, Michael Tamas, Jeannette Clifford