Patents by Inventor Roland Fleddermann

Roland Fleddermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133822
    Abstract: A method and system for determining a location of artefacts and/or inclusions in a gemstone, mineral or sample thereof, the method comprising: surface mapping a gemstone, mineral or sample thereof to determine surface geometry associated with at least a portion of a surface of the gemstone, mineral or sample thereof; sub-surface mapping the gemstone, mineral or sample thereof using an optical beam that is directed at the surface along an optical beam path, wherein the optical beam is generated by an optical source using an optical tomography process; determining a surface normal at the surface at an intersection point between the optical beam path and the determined surface geometry; determining relative positioning between the surface normal and the optical beam path; and determining the location of artefacts and/or inclusions in the gemstone, mineral or sample thereof based on the sub-surface mapping step and the determined relative positioning.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Applicant: The Australian National University
    Inventors: Roland Fleddermann, Jong Hann Chow, Adrian Paul Sheppard, Timothy John Senden, Shane Jamie Latham, Keshu Huang
  • Patent number: 11898962
    Abstract: A method and system for determining a location of artefacts and/or inclusions in a gemstone, mineral or sample thereof, the method comprising the steps of: surface mapping a gemstone, mineral or sample thereof to determine surface geometry associated with at least a portion of a surface of the gemstone, mineral or sample thereof; sub-surface mapping the gemstone, mineral or sample thereof using an optical beam that is directed at the surface along an optical beam path, wherein the optical beam is generated by an optical source using an optical tomography process; determining a surface normal at the surface at an intersection point between the optical beam path and the determined surface geometry; determining relative positioning between the surface normal and the optical beam path; and determining the location of artefacts and/or inclusions in the gemstone, mineral or sample thereof based on the sub-surface mapping step and the determined relative positioning.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: February 13, 2024
    Assignee: The Australian National University
    Inventors: Roland Fleddermann, Jong Hann Chow, Adrian Paul Sheppard, Timothy John Senden, Shane Jamie Latham, Keshu Huang
  • Publication number: 20210041369
    Abstract: A method and system for determining a location of artefacts and/or inclusions in a gemstone, mineral or sample thereof, the method comprising the steps of: surface mapping a gemstone, mineral or sample thereof to determine surface geometry associated with at least a portion of a surface of the gemstone, mineral or sample thereof; sub-surface mapping the gemstone, mineral or sample thereof using an optical beam that is directed at the surface along an optical beam path, wherein the optical beam is generated by an optical source using an optical tomography process; determining a surface normal at the surface at an intersection point between the optical beam path and the determined surface geometry; determining relative positioning between the surface normal and the optical beam path; and determining the location of artefacts and/or inclusions in the gemstone, mineral or sample thereof based on the sub-surface mapping step and the determined relative positioning.
    Type: Application
    Filed: March 4, 2019
    Publication date: February 11, 2021
    Applicant: The Australian National University
    Inventors: Roland Fleddermann, Jong Hann Chow, Adrian Paul Sheppard, Timothy John Senden, Shane Jamie Latham, Keshu Huang