Patents by Inventor Roland Hedrich

Roland Hedrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8451440
    Abstract: An apparatus (1) for the optical inspection of wafers is disclosed, which comprises an assembly unit (10) which carries optical elements (30, 31, 32, 33) of at least one illumination path (3) for a bright field illumination and optical elements (50, 51, 52, 60, 61, 62, 70, 71, 72, 80, 81, 82) of at least one illumination path (5, 6, 7, 8) for a dark field illumination. The assembly unit (10) furthermore carries plural optical elements (91, 92, 93, 94, 95, 96, 97, 98, 99, 100) of at least one detection path (91, 92). An imaging optical element (32) of the at least one illumination path (3) for the bright field illumination (30), imaging optical elements (51, 61, 71, 81) of the at least one illumination path for the dark field illumination, and imaging optical elements (91, 95, 96) of the at least one detection path (9) are designed in such a way that all illumination paths (3, 5, 6, 7, 8) and all detection paths (91, 92) are telecentric.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: May 28, 2013
    Assignee: Kla-Tencor Mie GmbH
    Inventors: Kurt Hahn, Roland Hedrich, Gerhard Hoppen, Lambert Danner, Albert Kreh, Wolfgang Vollrath, Alexander Büttner, Christof Krampe-Zadler, Henning Backhauss, Hermann Bittner
  • Publication number: 20100295938
    Abstract: An apparatus (1) for the optical inspection of wafers is disclosed, which comprises an assembly unit (10) which carries optical elements (30, 31, 32, 33) of at least one illumination path (3) for a bright field illumination and optical elements (50, 51, 52, 60, 61, 62, 70, 71, 72, 80, 81, 82) of at least one illumination path (5, 6, 7, 8) for a dark field illumination. The assembly unit (10) furthermore carries plural optical elements (91, 92, 93, 94, 95, 96, 97, 98, 99, 100) of at least one detection path (91, 92). An imaging optical element (32) of the at least one illumination path (3) for the bright field illumination (30), imaging optical elements (51, 61, 71, 81) of the at least one illumination path for the dark field illumination, and imaging optical elements (91, 95, 96) of the at least one detection path (9) are designed in such a way that all illumination paths (3, 5, 6, 7, 8) and all detection paths (91, 92) are telecentric.
    Type: Application
    Filed: March 3, 2010
    Publication date: November 25, 2010
    Applicant: KLA-TENCOR MIE GMBH
    Inventors: Kurt Hahn, Roland Hedrich, Gerhard Hoppen, Lambert Danner, Albert Kreh, Wolfgang Vollrath, Alexander Büttner, Christof Krampe-Zadler, Henning Backhauss, Hermann Bittner
  • Patent number: 7152488
    Abstract: The invention concerns a system operating unit (30) having a column (3) that is attachable by way of at least two supports (9, 10) to different points of a system housing (14). In the preferred embodiment, this column is attached laterally to the housing, the supports serving for attachment to the housing of the system. In addition, a retaining bracket (4) is connected to the column (3) in such a way that a horizontal deflection of the retaining bracket (4) about a vertical axis is possible.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: December 26, 2006
    Assignee: Leica Microsystems Semiconductor GmbH
    Inventors: Roland Hedrich, Karsten Urban, Joachim Wienecke
  • Publication number: 20040244512
    Abstract: The invention concerns a system operating unit (30) having a column (3) that is attachable by way of at least two supports (9, 10) to different points of a system housing (14). In the preferred embodiment, this column is attached laterally to the housing, the supports serving for attachment to the housing of the system. In addition, a retaining bracket (4) is connected to the column (3) in such a way that a horizontal deflection of the retaining bracket (4) about a vertical axis is possible.
    Type: Application
    Filed: May 26, 2004
    Publication date: December 9, 2004
    Applicant: LEICA MICROSYSTEMS SEMICONDUCTOR GmbH
    Inventors: Roland Hedrich, Karsten Urban, Joachim Wienecke
  • Patent number: 6473230
    Abstract: The invention concerns a microscope with a capability for switching between the deep ultra-violet and the visible spectral region having a displaceable tube lens changer (16) with at least one tube lens (17a) for the IV light region and at least one tube lens (17b) for the visible light region and additionally having a reflector carrier having multiple reflectors (12) arranged shiftably in the illuminating beam path on said reflector carrier (13). The reflector carrier (13) on the one hand and the tube lens changer (16) on the other hand are mechanically coupled to one another in such a way that shifting the reflector carrier (13) in the illuminating beam path to a specific reflector (12) automatically displaces the tube lens changer (16) in such a way that the latter arranges in the optical axis (15) a tube lens (17) corresponding to the reflector (12).
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: October 29, 2002
    Assignee: Leica Microsystems Wetzlar GmbH
    Inventor: Roland Hedrich
  • Publication number: 20020135870
    Abstract: The invention concerns a microscope with a capability for switching between the deep ultra-violet and the visible spectral region having a displaceable tube lens changer (16) with at least one tube lens (17a) for the UV light region and at least one tube lens (17b) for the visible light region and additionally having a reflector carrier having multiple reflectors (12) arranged shiftably in the illuminating beam path on said reflector carrier (13). The reflector carrier (13) on the one hand and the tube lens changer (16) on the other hand are mechanically coupled to one another in such a way that shifting the reflector carrier (13) in the illuminating beam path to a specific reflector (12) automatically displaces the tube lens changer (16) in such a way that the latter arranges in the optical axis (15) a tube lens (17) corresponding to the reflector (12).
    Type: Application
    Filed: December 4, 2001
    Publication date: September 26, 2002
    Applicant: Leica Microsystems Wetzlar GmbH
    Inventor: Roland Hedrich
  • Patent number: 6236503
    Abstract: The invention relates to an inspection microscope for the semiconductor industry. The microscope stand consists of a foot (1), a pillar (4) and a crosshead (5). In order to facilitate unobstructed feeding of samples from the back part of the microscope stand, the pillar (4) is mounted laterally next to the back end of the foot (1) and the crosshead (5) arranged thereon when seen from the front. This makes it possible to save space and avoid adaptations when integrating the microscope stand into the clusters in the test area of the semiconductor industry and to feed test objects directly from the back of the microscope stage (3). In an especially advantageous construction of the stand, the inspection microscope is particularly suitable for examining large-surface objects (e.g. flat screens or 400 nm wafers).
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: May 22, 2001
    Assignee: Leica Microsystems Wetzlar GmbH
    Inventors: Ulrich Kaczynski, Roland Hedrich
  • Patent number: 5315080
    Abstract: A limit switching apparatus with defined overtravel for specimen-objective protection on microscopes having a motorized focusing drive. A stored focus position or position of the specimen stage can be overtraveled by a fixed amount. The maximum travel path of the specimen stage is additionally limited by a switching rod and a short-circuiting switch, in order to ensure reliable specimen-objective protection even in the event of a fault in the control electronics.
    Type: Grant
    Filed: April 3, 1992
    Date of Patent: May 24, 1994
    Assignee: Leica Mikroskopie und Systems GmbH
    Inventors: Ulrich Kaczynski, Roland Hedrich