Patents by Inventor Roland Hilser

Roland Hilser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11150261
    Abstract: A method for producing sensor information depends on a rotational speed, using a rotational speed sensor which is adapted to output rotational speed pulses in predetermined angular positions of a physical sensor field that rotates at the rotational speed. In order to increase resolution, a digital angle signal each is determined between the pulses. A defined number of most significant bits of said angle information is output to determine the rotational speed so that the interval between two pulses is subdivided into a defined number of subintervals. An angle value which can be unambiguously interpreted by means of the sinusoidal signal can be determined from the cosine signal by using two phase shift sinusoidal signals and an arccos function. The device optionally outputs the angle signal below a threshold value and an impulse signal above the threshold value to determine speed.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: October 19, 2021
    Assignee: Continental Teves AG & Co. OHG
    Inventors: Wolfgang Jöckel, Timo Dietz, Bernhard Schmid, Roland Hilser
  • Publication number: 20170160303
    Abstract: A method for producing sensor information depends on a rotational speed, using a rotational speed sensor which is adapted to output rotational speed pulses in predetermined angular positions of a physical sensor field that rotates at the rotational speed. In order to increase resolution, a digital angle signal each is determined between the pulses. A defined number of most significant bits of said angle information is output to determine the rotational speed so that the interval between two pulses is subdivided into a defined number of subintervals. An angle value which can be unambiguously interpreted by means of the sinusoidal signal can be determined from the cosine signal by using two phase shift sinusoidal signals and an arccos function. The device optionally outputs the angle signal below a threshold value and an impulse signal above the threshold value to determine speed.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Applicant: Continental Teves AG & Co. oHG
    Inventors: Wolfgang Jöckel, Timo Dietz, Bernhard Schmid, Roland Hilser
  • Patent number: 8794047
    Abstract: A method and apparatus for the precise measuring operation of a micromechanical rotation rate sensor, including at least one deflectively suspended seismic mass, at least one drive device for driving the seismic mass, and at least one first and one second trimming electrode element, which are jointly assigned directly or indirectly to the seismic mass, a first electrical trimming voltage (UTO1, UTLO1, UTRO1) being set between the first trimming electrode element and the seismic mass, and a second electrical trimming voltage (UTO2, UTLO2, UTRO2) being set between the second trimming electrode element and the seismic mass, the first and the second electrical trimming voltages being set at least as a function of a quadrature parameter (UT) and a resonance parameter (Uf).
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: August 5, 2014
    Assignees: Continental Teves AG & Co. oHG, VTI Technologies Oy
    Inventors: Stefan Günthner, Roland Hilser, Ramnath Sivaraman, Bernhard Schmid, Petri Klemetti
  • Patent number: 8752430
    Abstract: A micromechanical acceleration sensor, including at least one substrate, one or more frames, at least a first frame of which is suspended directly or indirectly on the substrate by at least one spring element, and is deflected with respect to the substrate when at least a first acceleration acts, and at least a first seismic mass which is suspended on the first frame or an additional frame by at least one spring element, and is deflected with respect to this frame when an acceleration acts which is, in particular, different from the first acceleration.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 17, 2014
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Roland Burghardt, Roland Hilser, Bernhard Schmid, Veith Albrecht, Dirk Theobald
  • Patent number: 8695424
    Abstract: In order to be able to perform redundant measurements of rotation rates particularly economically, disclosed herein is a sensor device which includes a dual-axis, first rotation rate sensor element with which rotation rates of rotating motions of the sensor device about a first and a second rotation rate measurement axis can be detected, wherein the first and the second rotation rate measurement axes are oriented orthogonally in relation to one another. The sensor device is defined by the fact that the sensor device includes at least one other rotation rate sensor element with which a rotation rate of a rotating motion of the sensor device about a rotation rate measurement axis, which lies in a plane together with the first and the second rotation rate measurement axes, can be deselected.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: April 15, 2014
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Bernhard Schmid, Roland Burghardt, Jörg Heimel, Otmar Simon, Roland Hilser
  • Patent number: 8279615
    Abstract: A method for producing an encapsulation module and/or for encapsulating a micromechanical arrangement, wherein electronic connection provisions are formed from a blank of electrically conductive semiconductor material, by one or more structuring processes and/or etching processes, wherein, in the course of forming the electronic connection provisions, a pedestal of the semiconductor material arises, on which the electronic connection provisions are arranged, wherein the latter are subsequently embedded with an embedding material and the embedding material and/or the semiconductor pedestal are removed after the embedding to an extent such that a defined number of the electronic connection provisions have electrical contacts on at least one of the outer surfaces of the encapsulation module thus produced, wherein upon forming the electronic connection provisions, on the pedestal of the semiconductor material, an insular material hump is formed, on which a plated-through hole is arranged in each case, and which e
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 2, 2012
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Bernhard Schmid, Roland Hilser, Heikki Kuisma, Altti Torkkeli
  • Publication number: 20120118062
    Abstract: A method and apparatus for the precise measuring operation of a micromechanical rotation rate sensor, including at least one deflectively suspended seismic mass, at least one drive device for driving the seismic mass, and at least one first and one second trimming electrode element, which are jointly assigned directly or indirectly to the seismic mass, a first electrical trimming voltage (UTO1, UTLO1, UTRO1) being set between the first trimming electrode element and the seismic mass, and a second electrical trimming voltage (UTO2, UTLO2, UTRO2) being set between the second trimming electrode element and the seismic mass, the first and the second electrical trimming voltages being set at least as a function of a quadrature parameter (UT) and a resonance parameter (Uf).
    Type: Application
    Filed: April 28, 2010
    Publication date: May 17, 2012
    Applicants: VTI Technologies OY, Continental Teves AG & Co., OHG
    Inventors: Stefan Günthner, Roland Hilser, Ramnath Sivaraman, Bernhard Schmid, Petri Klemetti
  • Publication number: 20120017676
    Abstract: In order to be able to perform redundant measurements of rotation rates particularly economically, disclosed herein is a sensor device which includes a dual-axis, first rotation rate sensor element with which rotation rates of rotating motions of the sensor device about a first and a second rotation rate measurement axis can be detected, wherein the first and the second rotation rate measurement axes are oriented orthogonally in relation to one another. The sensor device is defined by the fact that the sensor device includes at least one other rotation rate sensor element with which a rotation rate of a rotating motion of the sensor device about a rotation rate measurement axis, which lies in a plane together with the first and the second rotation rate measurement axes, can be deselected.
    Type: Application
    Filed: March 11, 2009
    Publication date: January 26, 2012
    Applicant: Continental Tevas AG & Co. oHG
    Inventors: Bernhard Schmid, Roland Burghardt, Jörg Heimel, Otmar Simon, Roland Hilser
  • Publication number: 20110197414
    Abstract: A method for installing a sensor arrangement into a vehicle having a vehicle chassis, wherein the vehicle chassis is in a defined position during the installation, and the sensor arrangement is attached directly or indirectly to the vehicle chassis, wherein the sensor arrangement includes one or more acceleration sensors with three linearly independent measuring directions, and the sensor arrangement has an electronic control unit which is configured in such a way that it includes a sensor calibration mode, wherein, after the attachment of the sensor arrangement, the at least one acceleration sensor senses the gravitational acceleration, after which the electronic control unit in the sensor calibration mode calculates and stores one or more relative positioning parameters from at least the detected direction of the gravitational acceleration (g), which positioning parameters include at least information about the relative positioning between the sensor arrangement and the vehicle chassis.
    Type: Application
    Filed: October 8, 2009
    Publication date: August 18, 2011
    Applicant: Continental Teves AG & Co. oHG
    Inventors: Roland Burghardt, Bernhard Schmid, Jörg Heimel, Roland Hilser, Dirk Theobald
  • Publication number: 20110113880
    Abstract: A micromechanical acceleration sensor includes at least a first seismic mass which is suspended in a deflectable manner, at least one readout device for detecting the deflection of the first seismic mass and at least one resetting device.
    Type: Application
    Filed: May 15, 2009
    Publication date: May 19, 2011
    Applicant: Continental Teves Ag & Co. oHG
    Inventors: Bernhard Schmid, Roland Hilser
  • Publication number: 20110023606
    Abstract: A micromechanical acceleration sensor, including at least one substrate, one or more frames, at least a first frame of which is suspended directly or indirectly on the substrate by at least one spring element, and is deflected with respect to the substrate when at least a first acceleration acts, and at least a first seismic mass which is suspended on the first frame or an additional frame by at least one spring element, and is deflected with respect to this frame when an acceleration acts which is, in particular, different from the first acceleration.
    Type: Application
    Filed: April 3, 2009
    Publication date: February 3, 2011
    Applicant: Continental Teves AG & Co.OHG
    Inventors: Roland Burghardt, Roland Hilser, Bernhard Schmid, Veith Albrecht, Dirk Theobald
  • Publication number: 20100290199
    Abstract: A method for producing an encapsulation module and/or for encapsulating a micromechanical arrangement, wherein electronic connection provisions are formed from a blank of electrically conductive semiconductor material, by one or more structuring processes and/or etching processes, wherein, in the course of forming the electronic connection provisions, a pedestal of the semiconductor material arises, on which the electronic connection provisions are arranged, wherein the latter are subsequently embedded with an embedding material and the embedding material and/or the semiconductor pedestal are removed after the embedding to an extent such that a defined number of the electronic connection provisions have electrical contacts on at least one of the outer surfaces of the encapsulation module thus produced, wherein upon forming the electronic connection provisions, on the pedestal of the semiconductor material, an insular material hump is formed, on which a plated-through hole is arranged in each case, and which e
    Type: Application
    Filed: December 14, 2007
    Publication date: November 18, 2010
    Applicant: Continental Teves AG &Co. oHG
    Inventors: Bernhard Schmid, Roland Hilser, Heikki Kuisma, Altti Torkkeli
  • Patent number: 6564637
    Abstract: A self-testing sensor (especially to measure an angular rate or acceleration) includes a resonant structure, an actor unit configured to excite the structure to a first periodic vibration, a piezoresistive element configured to generate an output signal that depends on the measured quantity, and an isolator configured to isolate a test signal component from the output signal, whereby the test signal component is generated by a second periodic vibration of the structure superposed on the first vibration. A device for self-testing a sensor includes an isolator configured to isolate a test signal component superposed on a useful signal component from the periodic output signal of the sensor, and it includes a comparator configured to compare the test signal component with a predefined value or a test signal fed to the sensor. For the self-test, a second periodic vibration is superposed on a first vibration of the structure, and an output signal containing information on the measured quantity is determined.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: May 20, 2003
    Assignee: EADS Deutschland GmbH
    Inventors: Josef Schalk, Erwin Stenzel, Karin Bauer, Rainer Freitag, Roland Hilser, Ralf Voss, Matthias Aikele, Helmut Seidel, Ulrich Prechtel