Patents by Inventor Roland Hoelzl

Roland Hoelzl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12134832
    Abstract: A coating device for coating components, in particular for nickel-plating spark plug housings. The coating device includes: a housing having an outer anode that is designed to receive the component, an inner anode that can be introduced into a through-opening of the component, and a voltage-generating device, the voltage-generating device being designed to generate a first voltage between the outer anode and the component, as well as a second voltage between the inner anode and the component. The housing has an inlet and an outlet for introducing and discharging a process medium into or out of the housing.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: November 5, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Roland Hoelzl, Frank Miller, Juergen Hackenberg, Lutz Baumgaertner, Michael Lingner, Tim Bergmann, Martina Bubrin
  • Patent number: 11437787
    Abstract: A spark plug housing. The spark plug housing includes an inner side, an outer side, and a longitudinal axis, which extends from an end of the spark plug housing facing toward the combustion chamber up to an end of the spark plug housing facing away from the combustion chamber. The spark plug housing includes a circumferential shoulder on its inner side, which is designed so that a spark plug insulator rests thereon, and a corrosion protection layer on its inner side, which is formed on a section of the inner side of the spark plug housing, the section extending from the end of the spark plug housing facing toward the combustion chamber to at least over the shoulder and along the inner circumference of the spark plug housing.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: September 6, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Bernhard Gries, Christoph Roland Hoelzl, Gabriel Petersen, Herbert Noelscher, Martina Bubrin, Milan Pilaski, Roland Kraus, Sabrina Rathgeber, Tim Bergmann, Tina Hirte
  • Publication number: 20220220626
    Abstract: A coating device for coating components, in particular for nickel-plating spark plug housings. The coating device includes: a housing having an outer anode that is designed to receive the component, an inner anode that can be introduced into a through-opening of the component, and a voltage-generating device, the voltage-generating device being designed to generate a first voltage between the outer anode and the component, as well as a second voltage between the inner anode and the component. The housing has an inlet and an outlet for introducing and discharging a process medium into or out of the housing.
    Type: Application
    Filed: March 18, 2020
    Publication date: July 14, 2022
    Inventors: Christoph Roland Hoelzl, Frank Miller, Juergen Hackenberg, Lutz Baumgaertner, Michael Lingner, Tim Bergmann, Martina Bubrin
  • Publication number: 20220190562
    Abstract: A pretreatment method for pretreating components, which are each formed of at least two different materials, prior to a coating process. The pretreatment method includes the steps: alkaline degreasing; chemical pickling in a first pickling medium; anodic pickling in a second pickling medium; and cathodic degreasing.
    Type: Application
    Filed: March 18, 2020
    Publication date: June 16, 2022
    Inventors: Christoph Roland Hoelzl, Martina Bubrin, Milan Pilaski, Tim Bergmann
  • Publication number: 20220123531
    Abstract: A spark plug housing. The spark plug housing includes an inner side, an outer side, and a longitudinal axis, which extends from an end of the spark plug housing facing toward the combustion chamber up to an end of the spark plug housing facing away from the combustion chamber. The spark plug housing includes a circumferential shoulder on its inner side, which is designed so that a spark plug insulator rests thereon, and a corrosion protection layer on its inner side, which is formed on a section of the inner side of the spark plug housing, the section extending from the end of the spark plug housing facing toward the combustion chamber to at least over the shoulder and along the inner circumference of the spark plug housing.
    Type: Application
    Filed: March 2, 2020
    Publication date: April 21, 2022
    Applicants: Robert Bosch GmbH, Robert Bosch GmbH
    Inventors: Bernhard Gries, Christoph Roland Hoelzl, Gabriel Petersen, Herbert Noelscher, Martina Bubrin, Milan Pilaski, Roland Kraus, Sabrina Rathgeber, Tim Bergmann, Tina Hirte
  • Patent number: 9976601
    Abstract: The invention relates to a coupling device for connecting a first shaft (10) to a second shaft (12) by means of two flanges (16, 18, 22, 24) that are meshed with one another, wherein the flanges are provided or designed with means (30, 32, 111, 211, 311, 317, 319, 321) of enabling the axial and/or radial relative misadjustment thereof due to a misalignment of the shafts to be visually observed. According to one variant, at least one of the flanges or an element (20, 26) meshed with the two flanges is provided with at least one transducer (50, 60, 70, 80, 90, 94) for generating an electrical signal and/or acoustic signal from a mechanical movement, wherein said transducer is designed to generate the signal on the basis of a periodic movement of the flanges relative to one another, at least if the relative movement of the two shafts to one another, which occurs as the shafts rotate due to misalignment of said shafts, exceeds a certain value.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 22, 2018
    Assignee: Prüftechnik Dieter Busch AG
    Inventors: Heinrich Lysen, Roland Hölzl
  • Publication number: 20180017381
    Abstract: A method for bringing two bodies (1, 2, 6, 7) into predetermined positions with respect to one another, which is carried out by an alignment system having data spectacles (smart glasses) (12). The dimensions of the bodies (1, 2 , 6, 7) and/or respective positions of the bodies (1, 2, 6, 7) are determined relative to each other by a data processing means (17) of the data spectacles (12) on the basis of images which are detected by an image detection means (16) of the data spectacles (12). Furthermore, an adjustment value is displayed in a display device 18 of the data spectacles (12).
    Type: Application
    Filed: December 28, 2015
    Publication date: January 18, 2018
    Applicant: Prüftechnik Dieter Busch AG
    Inventors: Roland Hölzl, Holger Schmidt
  • Patent number: 9605951
    Abstract: The invention relates to an apparatus (8) for detecting a target position deviation of two bodies (10, 12), with a first measuring unit (14) for placement on the first body (10), a second measuring unit (18) for placement on the second body (12), and an evaluation unit (22). The first measuring unit (14) has means (24) to generate at least one bundle of light beams (28) and a scattering area (34) to scatter light (WV, PV) striking the scattering area, and the second measuring unit (18) has a reflector arrangement (38) to reflect the bundle of light beams (28) onto the scattering area (34). The second measuring unit (18) has a camera (36) to record images of the scattering area (34). The evaluation unit (22) is configured so as to detect from the images a deviation in target position of the bodies (10, 12). The invention additionally relates to a method to detect the deviation in target position.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: March 28, 2017
    Assignee: PRÜFTECHNIK DIETER BUSCH AG
    Inventor: Roland Hölzl
  • Publication number: 20160223320
    Abstract: The invention relates to an apparatus (8) for detecting a target position deviation of two bodies (10, 12), with a first measuring unit (14) for placement on the first body (10), a second measuring unit (18) for placement on the second body (12), and an evaluation unit (22). The first measuring unit (14) has means (24) to generate at least one bundle of light beams (28) and a scattering area (34) to scatter light (WV, PV) striking the scattering area, and the second measuring unit (18) has a reflector arrangement (38) to reflect the bundle of light beams (28) onto the scattering area (34). The second measuring unit (18) has a camera (36) to record images of the scattering area (34). The evaluation unit (22) is configured so as to detect from the images a deviation in target position of the bodies (10, 12). The invention additionally relates to a method to detect the deviation in target position.
    Type: Application
    Filed: April 1, 2015
    Publication date: August 4, 2016
    Inventor: Roland Hölzl
  • Publication number: 20160035077
    Abstract: A system for computer-based detection of damage on machine components, such as misalignments and mechanical damage on bearings and clutches, with which mathematical linkage of the temperatures of selected regions of thermography pictures are compared with reference pictures. The system can consult photographs from the visible spectral range in the computed-based assessment.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 4, 2016
    Applicant: Prüftechnik AG
    Inventor: Roland Hoelzl
  • Patent number: 9240040
    Abstract: Computer-based detection of damage on machine components, such as misalignments and mechanical damage on bearings and clutches, is achieved using mathematical linkage of the temperatures of selected regions of thermography pictures. Photographs from the visible spectral range can be consulted in the computed-based detection.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: January 19, 2016
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Roland Hoelzl
  • Patent number: 9091717
    Abstract: A method for nondestructive and noncontact detection of faults in a test piece, with a transmitter coil arrangement with at least one transmitter coil, a receiver coil arrangement with at least one receiver coil for detecting a periodic signal which has a carrier oscillation whose amplitude and/or phase is modulated by a fault in the test piece. A signal processing unit producing a useful signal receiver coil signal, and an evaluation unit evaluating the useful signal for detection of a fault in the test piece. A self-test unit automatically or upon an external request undertakes systematic quantitative checking of signal processing functions of the signal processing unit and/or systematic quantitative checking of the transmitter coil arrangement and/or of the receiver coil arrangement and/or upon external request undertakes calibration of the signal processing unit using a calibration standard which replaces the transmitter coil arrangement and/or of the receiver coil arrangement.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 28, 2015
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Roland Hölzl
  • Patent number: 9086385
    Abstract: A method and device for nondestructive and noncontact detection of faults in a test piece, or electrically conductive particles in a liquid flow, moving passed the device, using eddy currents. The test piece or flow is exposed to periodic alternating electromagnetic fields. A periodic electrical signal is detected. The receiver coil signal is digitized with an A/D converter stage. A useful signal is produced from the digitized receiver coil signal with a signal processing unit, and the useful signal is evaluated with an evaluation unit for detecting a fault in the test piece or electrically conductive particles. When overdriving of the A/D converter stage by the receiver coil signal is ascertained by monitoring the curve shape of the digitized receiver coil signal, a part of the receiver coil signal truncated by the A/D converter stage is reconstructed using a mathematical approximation in the digitized receiver coil signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 21, 2015
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Roland Hölzl
  • Publication number: 20130214770
    Abstract: A method for nondestructive and noncontact detection of faults in a test piece, with a transmitter coil arrangement with at least one transmitter coil, a receiver coil arrangement with at least one receiver coil for detecting a periodic signal which has a carrier oscillation whose amplitude and/or phase is modulated by a fault in the test piece. A signal processing unit producing a useful signal receiver coil signal, and an evaluation unit evaluating the useful signal for detection of a fault in the test piece. A self-test unit automatically or upon an external request undertakes systematic quantitative checking of signal processing functions of the signal processing unit and/or systematic quantitative checking of the transmitter coil arrangement and/or of the receiver coil arrangement and/or upon external request undertakes calibration of the signal processing unit using a calibration standard which replaces the transmitter coil arrangement and/or of the receiver coil arrangement.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 22, 2013
    Applicant: PRUEFTECHNIK DIETER BUSCH AG
    Inventor: Roland HÖLZL
  • Patent number: 8493065
    Abstract: Method and device for nondestructive and noncontact detection of faults in a test piece, or electrically conductive particles in a liquid flow, moving past the device, using eddy currents. The test piece or flow is exposed to periodic alternating electromagnetic fields. A periodic electrical signal is detected by a receiver coil. The receiver coil signal has a carrier oscillation whose amplitude and/or phase is modulated by defects in the test piece or by electrically conducting particles and is digitized. A useful signal is produced from the digitized receiver coil signal, and the useful signal is evaluated with an evaluation unit to detect faults in the test piece or electrically conductive particles. When overdriving of the A/D converter stage by the receiver coil signal is ascertained, a part of the receiver coil signal truncated by the A/D converter stage is reconstructed using a mathematical approximation in the digitized receiver coil signal.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: July 23, 2013
    Assignee: Prueftechnik Dieter Busch AG
    Inventor: Roland Hölzl
  • Publication number: 20130169799
    Abstract: Computer-based detection of damage on machine components, such as misalignments and mechanical damage on bearings and clutches, is achieved using mathematical linkage of the temperatures of selected regions of thermography pictures. Photographs from the visible spectral range can be consulted in the computed-based detection.
    Type: Application
    Filed: July 12, 2011
    Publication date: July 4, 2013
    Applicant: PRUFTECHNIK DIETER BUSCH AG
    Inventor: Roland Hoelzl
  • Patent number: 8421471
    Abstract: Method for nondestructive and noncontact detection of faults in a test piece, with a transmitter coil arrangement with at least one transmitter coil that transmits periodic electromagnetical AC fields to a test piece, a receiver coil arrangement with at least one receiver coil for detecting a periodic electrical signal having a carrier oscillation whose amplitude and/or phase is modulated by a fault in the test piece. A signal processing unit produces a useful signal from the receiver coil signal, and an evaluation unit evaluates the useful signal to detect a fault in the test piece. A self-test unit undertakes systematic quantitative checking of signal processing functions of the signal processing unit and/or of the transmitter coil arrangement and/or of the receiver coil arrangement and/or upon external request undertakes calibration of the signal processing unit using a calibration standard which replaces the transmitter coil arrangement and/or of the receiver coil arrangement.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: April 16, 2013
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Roland Hölzl
  • Patent number: 8354836
    Abstract: A device for detecting electrically conductive particles in a liquid flowing in a pipe section, with a transmitter coil surrounding the pipe section for inducing eddy currents in the particles, at least one first inductive receiver coil surrounding the pipe section and a second inductive receiver coil which is spaced axially to the first receiver coil and which surrounds the pipe section, the first and the second receiver coils being located in the region of the transmitter coil and being subtractively connected, in order to output a difference signal according to the eddy currents induced by the transmitter coil, and the transmitter coil forming the primary side and the receiver coils forming the secondary side of a transformer arrangement. An evaluation unit evaluates the difference signal in order to detect passage of electrically conductive particles in the pipe section.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 15, 2013
    Assignee: Prüftechnik Dieter Busch AG
    Inventors: Edwin Becker, Thomas Knoell, Roland Hoelzl
  • Patent number: 8274280
    Abstract: A device for nondestructive and noncontact detection of faults in a test piece, with a stationary measurement device (16) for taking an eddy current or a magnetic stray flux measurements on a test piece (10) continuously advanced relative to the measurement device; and a device (12) for positioning the test piece with respect to the measurement device in a plane perpendicular to the direction of movement of the test piece. The device also has a monitoring unit (20) with at least three distance sensors (22) arranged distributed around the test piece in the peripheral direction for contactless detection of the distance between the surface of the test piece facing the respective sensor and the respective sensor, as well as a unit for evaluating the signals from the sensors.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: September 25, 2012
    Assignee: Pruftechnik Dieter Busch AG
    Inventors: Roland Hoelzl, Bernd Zimmermann
  • Patent number: 7956601
    Abstract: A process and device for detecting electrically conductive particles in a liquid flowing in a pipe section, the liquid being exposed to periodic alternating electromagnetic fields by a transmitter coil which induces eddy currents in the particles, a probe made as a coil arrangement and which has an effective width producing a periodic electrical signal based on the eddy currents. The signal ha a carrier oscillation with an amplitude and/or phase which is modulated by particles passing across the effective width of the coil arrangement, the probe signal being filtered by a frequency-selective first filter unit, the filtered signal being sampled by a triggerable A/D converter stage to obtain a demodulated digital measurement signal, the digital measurement signal being filtered by a digital, frequency-selective adjustable second filter unit to obtain a useful signal, and the useful signal being evaluated to detect passage of electrically conductive particles in the pipe section.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: June 7, 2011
    Assignee: Prueftechnik Dieter Busch AG
    Inventors: Edwin Becker, Thomas Knoell, Roland Hoelzl