Patents by Inventor Roland Norden

Roland Norden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846244
    Abstract: A method for operating an injection valve by ascertaining an opening time and/or closing time of the injection valve on the basis of a sensor signal. The method includes: providing an analysis point time series by sampling a sensor signal of a sensor of the injection valve; using a nonlinear, data-based first submodel in order to obtain a first model output on the basis of the analysis point time series; using a linear, data-based second submodel in order to obtain a second model output on the basis of the analysis point time series; ascertaining the opening time and/or closing time as a function of the first and second model outputs.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: December 19, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20230340917
    Abstract: A method for operating an injection valve by determining an opening or closing time of the injection valve based on a sensor signal. The method includes: providing an evaluation point time series by sampling a sensor signal of a sensor of the injection valve; using a non-linear data-based first sub-model to obtain a first output vector based on the evaluation point time series, wherein each element of the first output vector is associated with a specific time; using a linear, data-based second sub-model to obtain a second output vector based on the evaluation point time series, wherein each element of the second output vector is associated with a specific time; limiting the time determined by the first output vector depending on the second output vector in order to obtain the opening or closing time.
    Type: Application
    Filed: September 10, 2021
    Publication date: October 26, 2023
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20230313752
    Abstract: A method for training a data-based evaluation model to determine an opening or closing time of an injection valve based on a sensor signal. The method includes: measuring an operation of the injection valve in order to determine at least one sensor signal and an associated opening or closing time; sampling the sensor signal at a sampling rate in order to obtain a sensor signal time series with sensor signal values; determining a plurality of training data sets by assigning a plurality of evaluation point time series generated from a sensor signal time series to the opening or closing time associated with the sensor signal, wherein the evaluation point time series has a lower temporal resolution than the sensor signal time series; training the data-based evaluation model depending on the determined training data sets.
    Type: Application
    Filed: September 10, 2021
    Publication date: October 5, 2023
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20230229121
    Abstract: A computer-implemented method for training a data-based time determining model for determining an opening or closing time of an injection valve based on a sensor signal. The method includes: providing an unlabeled analysis point time series by sampling the sensor signal of a sensor of the injection valve; training the data-based time determining model to assign a time specification which represents a specific opening or closing duration to an analysis point time series, the training process being carried out using a first shifting function to time-shift the analysis point time series and a second shifting function in order to time-shift the time specification. A consistency loss function is used for the training process.
    Type: Application
    Filed: September 10, 2021
    Publication date: July 20, 2023
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20230228226
    Abstract: A method for operating an injection valve by ascertaining an opening time and/or closing time of the injection valve on the basis of a sensor signal. The method includes: providing an analysis point time series by sampling a sensor signal of a sensor of the injection valve; using a nonlinear, data-based first submodel in order to obtain a first model output on the basis of the analysis point time series; using a linear, data-based second submodel in order to obtain a second model output on the basis of the analysis point time series; ascertaining the opening time and/or closing time as a function of the first and second model outputs.
    Type: Application
    Filed: September 10, 2021
    Publication date: July 20, 2023
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Patent number: 11454202
    Abstract: A computer-implemented method for ascertaining a closure point in time of an injector of an internal combustion engine using a classifier. The method includes: ascertaining a time series of input signals, each corresponding to a point in time within the time series, and each characterizing a deformation of the injector; ascertaining a plurality of first values using the classifier based on the time series, in each case a first value corresponding to a point in time of the time series, and the first value characterizing a probability that the closure point in time of the injector matches the point in time; ascertaining a plurality of second values, each being a sum of neighboring first values, of a first value and the first value, the second value corresponding to the point in time to which the first value corresponds; ascertaining the closure point in time based on the largest second value.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: September 27, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20220170436
    Abstract: A computer-implemented method for ascertaining a closure point in time of an injector of an internal combustion engine using a classifier. The method includes: ascertaining a time series of input signals, each corresponding to a point in time within the time series, and each characterizing a deformation of the injector; ascertaining a plurality of first values using the classifier based on the time series, in each case a first value corresponding to a point in time of the time series, and the first value characterizing a probability that the closure point in time of the injector matches the point in time; ascertaining a plurality of second values, each being a sum of neighboring first values, of a first value and the first value, the second value corresponding to the point in time to which the first value corresponds; ascertaining the closure point in time based on the largest second value.
    Type: Application
    Filed: November 22, 2021
    Publication date: June 2, 2022
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Patent number: 10807441
    Abstract: The invention relates to a drive train (1), in particular for a vehicle as an electric vehicle or hybrid vehicle, comprising: an electric machine (6) for the driving or the traction of the vehicle (2); a refrigeration circuit (14), which has an air-conditioning compressor (19), an evaporator (17), a condenser (18), and an expansion valve (16), for cooling an interior (5) of the vehicle (2); and a drive unit for mechanically driving the air-conditioning compressor (19), wherein the electric machine (6) is mechanically coupled to the air-conditioning compressor (19) by means of a mechanical compressor coupling element (20) such that the electric machine (19) for the driving or the traction of the vehicle (2) is used additionally to mechanically drive the air-conditioning compressor (19).
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: October 20, 2020
    Assignee: Robert Bosch GmbH
    Inventor: Roland Norden
  • Publication number: 20200269659
    Abstract: The invention relates to a drive train (1), in particular for a vehicle as an electric vehicle or hybrid vehicle, comprising: an electric machine (6) for the driving or the traction of the vehicle (2); a refrigeration circuit (14), which has an air-conditioning compressor (19), an evaporator (17), a condenser (18), and an expansion valve (16), for cooling an interior (5) of the vehicle (2); and a drive unit for mechanically driving the air-conditioning compressor (19), wherein the electric machine (6) is mechanically coupled to the air-conditioning compressor (19) by means of a mechanical compressor coupling element (20) such that the electric machine (19) for the driving or the traction of the vehicle (2) is used additionally to mechanically drive the air-conditioning compressor (19).
    Type: Application
    Filed: December 1, 2016
    Publication date: August 27, 2020
    Inventor: Roland Norden
  • Patent number: 9193272
    Abstract: In a jump-starting method between an electric vehicle providing a jump-start and an electric vehicle receiving a jump-start, the electrical systems of the two electric vehicles are temporarily interconnected electrically during the time of the jump-starting.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: November 24, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Fassnacht, Roland Norden
  • Patent number: 8993137
    Abstract: An energy storage system, in particular a battery having a plurality of battery cells. These battery cells are accommodated in a first container. The first container is separated from a second container by a separating element, which allows for establishing a pressure difference ?p for expansion of a gas out of the first container into the second container.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: March 31, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Roland Norden, Jochen Fassnacht
  • Patent number: 8731796
    Abstract: A device for the energy management of a vehicle, which has an air-conditioning system and a controller controlling the air-conditioning system. The air-conditioning system includes an air-conditioning compressor coupled mechanically to the drive train and a thermal storage unit. The controller controls the air-conditioning compressor in such a way that the energy efficiency of the vehicle is improved.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: May 20, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Roland Norden
  • Patent number: 8688360
    Abstract: A motor vehicle having an internal combustion engine, a differential pressure sensor or two pressure sensors for detecting a pressure difference, which may be in an exhaust tract of the internal combustion engine, and an evaluation unit for evaluating the detected pressure difference. Moreover, the present invention relates to a method for operating a motor vehicle. A controlling arrangement is provided for controlling an automatic start-stop system or an ignition system of the motor vehicle as a function of the result of the evaluation of the detected pressure difference used to detect immersion or submersion of a tailpipe of the exhaust tract in water, sludge, or a similar liquid medium in order to prevent the internal combustion engine from shutting off when the tailpipe is immersed or submerged.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: April 1, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Roland Norden, Michael Bildstein, Herbert Prickarz, Kaspar Schmoll Genannt Eisenwerth
  • Publication number: 20120286720
    Abstract: In a jump-starting method between an electric vehicle providing a jump-start and an electric vehicle receiving a jump-start, the electrical systems of the two electric vehicles are temporarily interconnected electrically during the time of the jump-starting.
    Type: Application
    Filed: August 12, 2010
    Publication date: November 15, 2012
    Inventors: Jochen Fassnacht, Roland Norden
  • Publication number: 20120262125
    Abstract: A method for prolonging the service life of a traction battery of an electric-powered or hybrid vehicle. The method includes recording at least one driving phase selection that encompasses a travel duration, a start of driving, or both; and recording an instantaneous state of charge of the traction battery. At least one aging parameter is minimized that encompasses the time interval between a charging process and the start of driving or the charging energy used to charge the traction battery in accordance with at least one driving phase selection; and the charging process is executed in accordance with the minimized aging parameter. Also, a charge control for implementing the method.
    Type: Application
    Filed: August 26, 2010
    Publication date: October 18, 2012
    Inventors: Jochen Fassnacht, Roland Norden
  • Publication number: 20120263981
    Abstract: An energy storage system, in particular a battery having a plurality of battery cells. These battery cells are accommodated in a first container. The first container is separated from a second container by a separating element, which allows for establishing a pressure difference ?p for expansion of a gas out of the first container into the second container.
    Type: Application
    Filed: August 18, 2010
    Publication date: October 18, 2012
    Inventors: Roland Norden, Jochen Fassnacht
  • Publication number: 20110307131
    Abstract: A device for the energy management of a vehicle, which has an air-conditioning system and a controller controlling the air-conditioning system. The air-conditioning system includes an air-conditioning compressor coupled mechanically to the drive train and a thermal storage unit. The controller controls the air-conditioning compressor in such a way that the energy efficiency of the vehicle is improved.
    Type: Application
    Filed: November 27, 2009
    Publication date: December 15, 2011
    Inventor: Roland Norden
  • Publication number: 20110202265
    Abstract: A motor vehicle having an internal combustion engine, a differential pressure sensor or two pressure sensors for detecting a pressure difference, which may be in an exhaust tract of the internal combustion engine, and an evaluation unit for evaluating the detected pressure difference. Moreover, the present invention relates to a method for operating a motor vehicle. A controlling arrangement is provided for controlling an automatic start-stop system or an ignition system of the motor vehicle as a function of the result of the evaluation of the detected pressure difference used to detect immersion or submersion of a tailpipe of the exhaust tract in water, sludge, or a similar liquid medium in order to prevent the internal combustion engine from shutting off when the tailpipe is immersed or submerged.
    Type: Application
    Filed: July 27, 2009
    Publication date: August 18, 2011
    Inventor: Roland Norden