Patents by Inventor Roland Smith

Roland Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11374684
    Abstract: A technique for radio transmitting data is described. As to a method aspect of the technique data to be transmitted to a receiver is represented by at least two partial modulation symbols. Each of the at least two partial modulation symbols is associated to a different layer of the radio transmission to the receiver. A modulation symbol is generated by combining the at least two partial modulation symbols at different power levels according to the associated layer. The modulation symbol is transmitted to the receiver.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: June 28, 2022
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Leif Wilhelmsson, Rocco Di Taranto, Miguel Lopez, Roland Smith
  • Publication number: 20220183037
    Abstract: Embodiments include methods, performed by a network node, for transmitting data on a shared channel in a wireless network. Such methods include performing a plurality of listen-before-talk (LBT) assessments for a corresponding plurality of substantially disjoint subsets of resources of a shared channel and, based on the plurality of LBT assessments, determining that at least one resource subset is available for transmission. Such methods also include transmitting signals or data to one or more user equipment (UE) using only resources selected from the at least one resource subset. For example, determining availability of resource subsets can be based on a threshold, for each resource subset, that is related to the size of the resource subset. Resource subsets can include adjacent spatial regions having substantially non-overlapping ranges of azimuths and elevations, and/or sub-bandwidths within a bandwidth of the shared channel. Other embodiments include network nodes configured to perform such methods.
    Type: Application
    Filed: March 23, 2020
    Publication date: June 9, 2022
    Inventors: Roland Smith, Esther Sienkiewicz, Mike Skof
  • Publication number: 20220159787
    Abstract: It is provided a communication device comprising: a first wired connection interface for communicating backhaul signals with more central equipment over wired connection; a mobile termination device configured to transmit and receive the backhaul signals, wherein the backhaul signals conform to a cellular mobile communication standard; a radio base station, connected to the mobile termination device, wherein the radio base station is configured to transmit and receive access signals, conforming to a cellular mobile communication standard, to and from at least one local device, the access signals containing same payload data as corresponding backhaul signals; and at least one antenna port for communicating the access signals over the air.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 19, 2022
    Inventors: Miguel Berg, Elmar Trojer, Michael Petras, Roland Smith, Per-Erik Eriksson
  • Publication number: 20220095261
    Abstract: A method and network node for uplink coordinated multipoint positioning are disclosed. According to one aspect, a method includes employing a coordinated multipoint function to decode data from a WD using signals received from the WD by the network node and from signals received from the WD by a plurality of cooperating network nodes. The method further includes converting the decoded WD data signal into a time domain reference signal and convert the signals received from the plurality of cooperating network nodes into time domain neighbour signals. The method also includes cross-correlating the time domain reference signal with the time domain neighbour signals to determine a time difference of arrival for each of the plurality of time domain neighbour signals. The method also includes calculating a position of the WD based on the time differences of arrival and based on locations of the cooperating network nodes.
    Type: Application
    Filed: December 13, 2019
    Publication date: March 24, 2022
    Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Roland SMITH, Miguel BERG, Satyam DWIVEDI, Mike SKOF
  • Patent number: 11269071
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 8, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Publication number: 20220022050
    Abstract: Embodiments of a wireless access node for dynamically transmitting an identification signal and/or detecting identification signals from other transmit nodes when operating in unlicensed spectrum and embodiments of a method of operation thereof are disclosed. In some embodiments, a method in a wireless access node that operates in an unlicensed frequency spectrum comprises determining, based on one or more parameters, whether the wireless access node is to transmit an identification signal and/or detect identification signals from other transmit nodes. The method further comprises operating in accordance with a result of the determining whether to transmit the identification signal and/or to detect identification signals from other transmit nodes. In this manner, throughput can be improved.
    Type: Application
    Filed: December 12, 2018
    Publication date: January 20, 2022
    Inventors: Christopher Richards, Roland Smith
  • Publication number: 20220011394
    Abstract: A method and network node for differential matched summed antenna positioning are disclosed. According to one aspect, a method includes summing sequential uplink data signals at each of a plurality of antennas of the network node to produce a plurality of antenna signal sums. The method also includes selecting one of the antenna signal sums to be used as a reference antenna signal sum. A channel impulse response is determined for each of a plurality of other antennas by cross correlating the reference antenna signal sum with the others of the plurality of antenna signal sums. The method further includes estimating a time difference of arrival from the channel impulse responses of the plurality of antennas, and estimating an error of the estimated time difference of arrival of each antenna. A position of a wireless device is determined using the estimated time differences of arrival.
    Type: Application
    Filed: December 13, 2019
    Publication date: January 13, 2022
    Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Roland SMITH, Miguel BERG, Satyam DWIVEDI, Mike SKOF
  • Publication number: 20210405180
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Application
    Filed: April 29, 2021
    Publication date: December 30, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Publication number: 20210263128
    Abstract: Systems and methods for determining an indication of locationing accuracy are disclosed herein. In some embodiments, an antenna deployment including multiple antennas and corresponding locations for the antennas is obtained. Then, one or more radio characteristics are determined for ubiety locations based on the antenna deployment and an indication of locationing accuracy for the ubiety locations is determined based on the one or more radio characteristics. In this way, an antenna deployment can be evaluated for locationing accuracy. This may be used by a network engineer or an automated system to determine and/or refine an antenna deployment.
    Type: Application
    Filed: September 14, 2018
    Publication date: August 26, 2021
    Inventors: Roland Smith, Gunther Auer, Kunpeng Qi
  • Patent number: 11054517
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: July 6, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Patent number: 11035949
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: June 15, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Publication number: 20210135781
    Abstract: A technique for radio transmitting data is described. As to a method aspect of the technique data to be transmitted to a receiver is represented by at least two partial modulation symbols. Each of the at least two partial modulation symbols is associated to a different layer of the radio transmission to the receiver. A modulation symbol is generated by combining the at least two partial modulation symbols at different power levels according to the associated layer. The modulation symbol is transmitted to the receiver.
    Type: Application
    Filed: January 7, 2021
    Publication date: May 6, 2021
    Inventors: Leif WILHELMSSON, Rocco DI TARANTO, Miguel LOPEZ, Roland SMITH
  • Patent number: 10973958
    Abstract: The present disclosure is directed to an artificial skin having a radar absorbing layer and a conductive layer containing an electrically conductive material, wherein the artificial skin has a reflection coefficient substantially equal to a human skin reflection coefficient, the human skin reflection coefficient being determined at an electromagnetic radiation frequency ranging from 1-500 GHz. A human phantom composed of the artificial skin and methods of testing the contrast resolution sufficiency of and active millimeter wave imaging system using the human phantom are also disclosed.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: April 13, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Jeffrey Brian Barber, Peter Roland Smith, James Christopher Weatherall, Barry Thomas Smith
  • Patent number: 10966075
    Abstract: Methods and systems for providing virtual beacons are presented. According to one aspect, a method for providing a virtual beacon at a first location comprises transmitting, by a transmitter at a second location geographically different from the first location, an information signal using a transmit power level, Pj, and including an advertised transmit power level, PA, both selected to be indicative of a distance, d, between a location of a receiver of the information signal and the first location. The signal transmitted from the second location emulates a signal that would have been produced by a beacon located at the first location. The information signals may be aimed at one or more User Equipments (UEs), and/or may be focused on one or more specific target locations rather than on individual UEs.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: March 30, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Roland Smith, Pontus Arvidson, Leif Wilhelmsson
  • Patent number: 10924882
    Abstract: According to certain embodiments, a method by a radio node operating as a location server is provided. The method includes receiving, from a first wireless device, user input identifying a marked location and associating the marked location with a Cellular-Ubiety Identifier (ID). Measurement information is obtained for the first wireless device. The measurement information is stored in a database with the Cellular-Ubiety ID.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: February 16, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Roland Smith, Åke Busin, Kunpeng Qi
  • Patent number: 10924207
    Abstract: A technique for radio transmitting data is described. As to a method aspect of the technique data to be transmitted to a receiver is represented by at least two partial modulation symbols. Each of the at least two partial modulation symbols is associated to a different layer of the radio transmission to the receiver. A modulation symbol is generated by combining the at least two partial modulation symbols at different power levels according to the associated layer. The modulation symbol is transmitted to the receiver.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: February 16, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (PUBL)
    Inventors: Leif Wilhelmsson, Rocco Di Taranto, Miguel Lopez, Roland Smith
  • Patent number: 10890603
    Abstract: A radio-frequency probe system with a transmitting or receiving element integrated into a cable assembly is disclosed. In some embodiments a preferred configuration may contain one or more sensing elements integrated into the transmitting or receiving element. In another embodiment, the radio frequency probe comprises an antenna body fixed to a coaxial cable, in which the center conductor of the coaxial cable serves as the transmitting or receiving element. A method for monitoring, transmitting, or detecting one or more parameters using a single radio frequency probe is also disclosed.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: January 12, 2021
    Assignee: CTS Corporation
    Inventors: Alexander Sappok, Roland Smith, III, Leslie Bromberg
  • Patent number: 10868643
    Abstract: Methods and systems for multi-protocol transmissions in shared spectrum are disclosed where an OFDM transmitter is configured to generate transmissions associated with one OFDM technology or protocol using subcarriers of another OFDM technology. Generally, an OFDM transmitter may be configured to map or assign the different OFDM signals to different subsets of the available OFDM subcarriers such that the data contained therein can be transmitted at the same or during an overlapping time interval. In one application, an LTE transmitter is configured to generate and/or transmit LTE information using LTE subcarriers located in unused portion(s) of the Wi-Fi system bandwidth independently of or in addition to transmitting Wi-Fi or LTE information using LTE subcarriers located in portions of the Wi-Fi system bandwidth normally occupied by Wi-Fi subcarriers.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 15, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Gary Boudreau, Hassan Halabian, Roland Smith
  • Patent number: 10862723
    Abstract: Methods and systems for multi-protocol beacon operation in shared spectrum (unlicensed band) are disclosed where an OFDM transmitter is configured to generate transmissions associated with one OFDM technology or protocol using subcarriers of another OFDM technology. In one application, an LTE transmitter (LTE-U) uses LTE subcarriers to generate an interpolated 802.11 (e.g. Wi-Fi) beacon transmission that can be understood by Wi-Fi receivers, for example to reserve the channel for a subsequent LTE transmission. For instance a W-LAN preamble is generated where STF and LTF fields consist in respectively 12 and 52 subcarriers mapped at their respective frequency locations among the 2048 LTE subcarriers with the remaining subcarriers set to 0. In some implementations, the use of beacons can be useful in implementations where it is desirable to gain prioritized access to reserve the channel.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 8, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Gary Boudreau, Hassan Halabian, Roland Smith
  • Publication number: 20200348410
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Application
    Filed: July 15, 2020
    Publication date: November 5, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith