Patents by Inventor Roland Sperlich

Roland Sperlich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230336083
    Abstract: A semiconductor package includes a transformer having a primary winding and a secondary winding. The primary winding has first and second terminals and a pair of taps. The secondary winding has first and second terminals and a pair of taps. The semiconductor package includes first and second data transfer circuits, a bridge, and a rectifier. The first data transfer circuit is coupled to the pair of taps of the primary winding. The second data transfer circuit is coupled to the pair of taps of the secondary winding. The bridge is coupled to the first and second terminals of the primary winding. The rectifier is coupled to the first and second terminals of the secondary winding.
    Type: Application
    Filed: July 19, 2022
    Publication date: October 19, 2023
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dushmantha Bandara RAJAPAKSHA, Roland SPERLICH, Anant Shankar KAMATH, Vijayalakshmi DEVARAJAN, Wesley RAY
  • Patent number: 11443889
    Abstract: A semiconductor package includes a transformer having a primary winding and a secondary winding. The primary winding has first and second terminals and a pair of taps. The secondary winding has first and second terminals and a pair of taps. The semiconductor package includes first and second data transfer circuits, a bridge, and a rectifier. The first data transfer circuit is coupled to the pair of taps of the primary winding. The second data transfer circuit is coupled to the pair of taps of the secondary winding. The bridge is coupled to the first and second terminals of the primary winding. The rectifier is coupled to the first and second terminals of the secondary winding.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: September 13, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dushmantha Bandara Rajapaksha, Roland Sperlich, Anant Shankar Kamath, Vijayalakshmi Devarajan, Wesley Ray
  • Patent number: 11380631
    Abstract: A lead frame for a multi-chip module includes a first conductor structure disposed on a substrate and having first and second arms linked at an angle. The first conductor structure is connected to ground. The lead frame also includes a second conductor structure disposed on the substrate and connected to a voltage supply. The second conductor structure is spaced apart and electrically isolated from the first conductor structure. The first and the second conductor structures are arranged to flank a plurality of integrated circuits (ICs) including one or more surge protection ICs disposed on the substrate. The first conductor structure is electrically connected to the plurality of ICs to provide electrical connections to ground, and the second conductor structure is electrically connected to the plurality of ICs to provide electrical connections to the voltage supply.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: July 5, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dushmantha Bandara Rajapaksha, Vijayalakshmi Devarajan, Roland Sperlich, Wesley Ray
  • Publication number: 20210159192
    Abstract: A lead frame for a multi-chip module includes a first conductor structure disposed on a substrate and having first and second arms linked at an angle. The first conductor structure is connected to ground. The lead frame also includes a second conductor structure disposed on the substrate and connected to a voltage supply. The second conductor structure is spaced apart and electrically isolated from the first conductor structure. The first and the second conductor structures are arranged to flank a plurality of integrated circuits (ICs) including one or more surge protection ICs disposed on the substrate. The first conductor structure is electrically connected to the plurality of ICs to provide electrical connections to ground, and the second conductor structure is electrically connected to the plurality of ICs to provide electrical connections to the voltage supply.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Dushmantha Bandara Rajapaksha, Vijayalakshmi Devarajan, Roland Sperlich, Wesley Ray
  • Patent number: 10880117
    Abstract: Two CAN bus transceivers utilized in a single integrated circuit package with the CAN bus connections between the two transceivers being inverted. Thus, one transceiver is connected to the CAN bus high and low lines while the other transceiver is connected to the CAN bus low and high lines. Both transceivers power up in a standby condition and each transceiver is monitoring for wake up signals on the CAN bus. The transceiver that is correctly connected to the CAN bus detects wake up signals. When the wake up signals are detected at that transceiver, that transceiver is brought to full operating state and the other transceiver is placed in a full standby condition. Additional input resistance is provided with each transceiver to maintain the proper input resistance for the integrated circuit.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: December 29, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Abhijeeth Aarey Premanath, Richard Edwin Hubbard, Maxwell Guy Robertson, Lokesh Kumar Gupta, Mark Edward Wentroble, Roland Sperlich, Dejan Radic
  • Publication number: 20200402702
    Abstract: A semiconductor package includes a transformer having a primary winding and a secondary winding. The primary winding has first and second terminals and a pair of taps. The secondary winding has first and second terminals and a pair of taps. The semiconductor package includes first and second data transfer circuits, a bridge, and a rectifier. The first data transfer circuit is coupled to the pair of taps of the primary winding. The second data transfer circuit is coupled to the pair of taps of the secondary winding. The bridge is coupled to the first and second terminals of the primary winding. The rectifier is coupled to the first and second terminals of the secondary winding.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 24, 2020
    Inventors: Dushmantha Bandara RAJAPAKSHA, Roland SPERLICH, Anant Shankar KAMATH, Vijayalakshmi DEVARAJAN, Wesley RAY
  • Publication number: 20200136860
    Abstract: Two CAN bus transceivers utilized in a single integrated circuit package with the CAN bus connections between the two transceivers being inverted. Thus, one transceiver is connected to the CAN bus high and low lines while the other transceiver is connected to the CAN bus low and high lines. Both transceivers power up in a standby condition and each transceiver is monitoring for wake up signals on the CAN bus. The transceiver that is correctly connected to the CAN bus detects wake up signals. When the wake up signals are detected at that transceiver, that transceiver is brought to full operating state and the other transceiver is placed in a full standby condition. Additional input resistance is provided with each transceiver to maintain the proper input resistance for the integrated circuit.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 30, 2020
    Inventors: Abhijeeth AAREY PREMANATH, Richard Edwin HUBBARD, Maxwell Guy ROBERTSON, Lokesh Kumar GUPTA, Mark Edward WENTROBLE, Roland SPERLICH, Dejan RADIC
  • Patent number: 10560282
    Abstract: Two CAN bus transceivers utilized in a single integrated circuit package with the CAN bus connections between the two transceivers being inverted. Thus, one transceiver is connected to the CAN bus high and low lines while the other transceiver is connected to the CAN bus low and high lines. Both transceivers power up in a standby condition and each transceiver is monitoring for wake up signals on the CAN bus. The transceiver that is correctly connected to the CAN bus detects wake up signals. When the wake up signals are detected at that transceiver, that transceiver is brought to full operating state and the other transceiver is placed in a full standby condition. Additional input resistance is provided with each transceiver to maintain the proper input resistance for the integrated circuit.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: February 11, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Abhijeeth Aarey Premanath, Richard Edwin Hubbard, Maxwell Guy Robertson, Lokesh Kumar Gupta, Mark Edward Wentroble, Roland Sperlich, Dejan Radic
  • Patent number: 10298238
    Abstract: A driver includes first and second resistors coupled to a supply voltage and coupled to pairs of main transistors at positive and negative output nodes. The first and second pairs of main transistors provide emphasis and de-emphasis on the positive and negative output nodes. The driver also includes a delay inverter, a pull up booster and a pull down booster. The delay inverter delays and inverts each of a pair of differential input signals to provide delayed and inverted differential signals. The pull up booster provides a bypass current path that bypasses the first and second resistors but includes at least some of the first and second pairs of main transistors. The pull down booster provides an additional current path from the supply voltage through the first or second resistor to ground.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: May 21, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Weicheng Zhang, Huanzhang Huang, Yanli Fan, Roland Sperlich
  • Publication number: 20180351765
    Abstract: Two CAN bus transceivers utilized in a single integrated circuit package with the CAN bus connections between the two transceivers being inverted. Thus, one transceiver is connected to the CAN bus high and low lines while the other transceiver is connected to the CAN bus low and high lines. Both transceivers power up in a standby condition and each transceiver is monitoring for wake up signals on the CAN bus. The transceiver that is correctly connected to the CAN bus detects wake up signals. When the wake up signals are detected at that transceiver, that transceiver is brought to full operating state and the other transceiver is placed in a full standby condition. Additional input resistance is provided with each transceiver to maintain the proper input resistance for the integrated circuit.
    Type: Application
    Filed: December 26, 2017
    Publication date: December 6, 2018
    Inventors: Abhijeeth Aarey Premanath, Richard Edwin Hubbard, Maxwell Guy Robertson, Lokesh Kumar Gupta, Mark Edward Wentroble, Roland Sperlich, Dejan Radic
  • Publication number: 20170257098
    Abstract: A driver includes first and second resistors coupled to a supply voltage and coupled to pairs of main transistors at positive and negative output nodes. The first and second pairs of main transistors provide emphasis and de-emphasis on the positive and negative output nodes. The driver also includes a delay inverter, a pull up booster and a pull down booster. The delay inverter delays and inverts each of a pair of differential input signals to provide delayed and inverted differential signals. The pull up booster provides a bypass current path that bypasses the first and second resistors but includes at least some of the first and second pairs of main transistors. The pull down booster provides an additional current path from the supply voltage through the first or second resistor to ground.
    Type: Application
    Filed: May 19, 2017
    Publication date: September 7, 2017
    Inventors: Weicheng Zhang, Huanzhang Huang, Yanli Fan, Roland Sperlich
  • Patent number: 9660652
    Abstract: A driver includes first and second resistors coupled to a supply voltage and coupled to pairs of main transistors at positive and negative output nodes. The first and second pairs of main transistors provide emphasis and de-emphasis on the positive and negative output nodes. The driver also includes a delay inverter, a pull up booster and a pull down booster. The delay inverter delays and inverts each of a pair of differential input signals to provide delayed and inverted differential signals. The pull up booster provides a bypass current path that bypasses the first and second resistors but includes at least some of the first and second pairs of main transistors. The pull down booster provides an additional current path from the supply voltage through the first or second resistor to ground.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 23, 2017
    Assignee: Texas Instruments Incorporated
    Inventors: Weicheng Zhang, Huanzhang Huang, Yanli Fan, Roland Sperlich
  • Patent number: 9602318
    Abstract: A serial communication circuit (FIG. 3) is disclosed. The circuit includes an equalizer circuit (306) arranged to receive a data signal (CH 1) and produce an equalized data signal. A log detector circuit (300) receives the data signal and produces a power signal indicating a power level of the data signal. A decision circuit (332) receives the power signal and produces a select signal. A first selection circuit (336) receives a plurality of first correction signals and applies one of the first correction signals to the equalizer circuit in response to the select signal.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: March 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Roland Sperlich, Huanzhang Huang, Charles M. Branch
  • Publication number: 20160087633
    Abstract: A driver includes first and second resistors coupled to a supply voltage and coupled to pairs of main transistors at positive and negative output nodes. The first and second pairs of main transistors provide emphasis and de-emphasis on the positive and negative output nodes. The driver also includes a delay inverter, a pull up booster and a pull down booster. The delay inverter delays and inverts each of a pair of differential input signals to provide delayed and inverted differential signals. The pull up booster provides a bypass current path that bypasses the first and second resistors but includes at least some of the first and second pairs of main transistors. The pull down booster provides an additional current path from the supply voltage through the first or second resistor to ground.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 24, 2016
    Inventors: Weicheng ZHANG, Huanzhang HUANG, Yanli FAN, Roland SPERLICH
  • Publication number: 20150341194
    Abstract: A serial communication circuit (FIG. 3) is disclosed. The circuit includes an equalizer circuit (306) arranged to receive a data signal (CH 1) and produce an equalized data signal. A log detector circuit (300) receives the data signal and produces a power signal indicating a power level of the data signal. A decision circuit (332) receives the power signal and produces a select signal. A first selection circuit (336) receives a plurality of first correction signals and applies one of the first correction signals to the equalizer circuit in response to the select signal.
    Type: Application
    Filed: August 5, 2015
    Publication date: November 26, 2015
    Inventors: Roland Sperlich, Huanzhang Huang, Charles M. Branch
  • Patent number: 9130792
    Abstract: A serial communication circuit (FIG. 3) is disclosed. The circuit includes an equalizer circuit (306) arranged to receive a data signal (CH 1) and produce an equalized data signal. A log detector circuit (300) receives the data signal and produces a power signal indicating a power level of the data signal. A decision circuit (332) receives the power signal and produces a select signal. A first selection circuit (336) receives a plurality of first correction signals and applies one of the first correction signals to the equalizer circuit in response to the select signal.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: September 8, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Roland Sperlich, Huanzhang Huang, Charles M. Branch
  • Publication number: 20140362900
    Abstract: A serial communication circuit (FIG. 3) is disclosed. The circuit includes an equalizer circuit (306) arranged to receive a data signal (CH 1) and produce an equalized data signal. A log detector circuit (300) receives the data signal and produces a power signal indicating a power level of the data signal. A decision circuit (332) receives the power signal and produces a select signal. A first selection circuit (336) receives a plurality of first correction signals and applies one of the first correction signals to the equalizer circuit in response to the select signal.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 11, 2014
    Inventors: Roland Sperlich, Huanzhang Huang, Charles M. Branch
  • Patent number: 8311083
    Abstract: Conventional transceivers do provide some compensation for in-phase/quadrature (I/Q) imbalance. However, these techniques do not separately compensate for I/Q imbalance for the transmitter and receiver sides of the transceiver. Here, a transceiver is provided that allows for compensation of I/Q imbalance in the transmitter and receiver irrespective of the other to allow for a more accurate transceiver.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: November 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Lei Ding, Zigang Yang, Fernando Mujica, Roland Sperlich
  • Patent number: 8306149
    Abstract: An apparatus is provided. In the apparatus, an input to index (I2I) module maps a complex input into a real signal. A real data tap delay line is coupled to the I2I module and includes N delay-elements. A complex data tap delay line is configured to receive the complex input and includes M delay elements. A set of K of non-linear function modules is also provided. Each non-linear function module from the set has at least one real input, at least one complex input, and at least one complex output. A configurable connectivity crossbar multiplexer couples K of the N real tap delay line elements to real inputs of the set non-linear functions and couples K of the M complex tap delay line elements to complex inputs of the set non-linear function modules.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Fernando Alberto Mujica, Hardik Prakash Gandhi, Lei Ding, Milind Borkar, Zigang Yang, Roland Sperlich, Lars Morten Jorgensen, William L. Abbott
  • Patent number: 8306150
    Abstract: Systems and methods for identifying a transmission channel response and a feedback channel response from a plurality of composite system responses are disclosed. A plurality of shifted feedback signals are created by shifting a feedback signal frequency by a plurality of first offset values and/or by shifting a transmission signal frequency by a plurality of second offset values. The feedback signals are compared to an input signal to identify the transmission channel response and/or a feedback channel response. A control signal is generated for a pre-distortion circuit to modify the input signal by an inverse of the transmission channel response. The composite system response is measured at a plurality of operating frequencies and at the plurality of offset values. The measurements are stored in a matrix and singular value decomposition is applied to the matrix of measurements to calculate the transmission channel response and feedback channel response.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Fernando A. Mujica, Carson A. Wick, Lei Ding, Milind Borkar, Roland Sperlich