Patents by Inventor Rolf G. Oskarsson

Rolf G. Oskarsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5503653
    Abstract: The present invention relates to a sintered titanium-based carbonitride alloy for milling and turning where the hard constituents are based on Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and/or W 3-25% binder phase based on Co and/or Ni. the alloy is characterized in that the bottom of the crater caused by the crater wear on an insert used in milling and turning contain grooves with a mutual distance between their peaks of 40-100 .mu.m, preferably 50-80 .mu.m, and where the main part, preferably >75% of the grooves have a depth of >12 .mu.m, preferably >15 .mu.m.
    Type: Grant
    Filed: July 26, 1994
    Date of Patent: April 2, 1996
    Assignee: Sandvik AB
    Inventors: Rolf G. Oskarsson, Gerold Weinl, Ake Ostlund
  • Patent number: 5421851
    Abstract: The present invention relates to a sintered titanium-based carbonitride alloy for milling and turning where the hard constituents are based on Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and/or W and the binder phase based on Co and/or Ni. The structure comprises 10-50% by volume hard constituent grains with core-rim-structure with a mean grain size for the cores of 2-8 .mu.m in a more fine-grained matrix with a mean grain size of the hard constituents of <1 .mu.m and where said mean grain size of the coarse hard constituents grains is >1.5 .mu.m, preferably >2 .mu.m, larger than the mean grain size for the grains in the matrix. The coarse grains can be Ti(C,N), (Ti,Ta)C, (Ti,Ta)(C,N) and/or (Ti,Ta,V)(C,N).
    Type: Grant
    Filed: May 6, 1992
    Date of Patent: June 6, 1995
    Assignee: Sandvik AB
    Inventors: Rolf G. Oskarsson, Gerold Weinl, Ake Ostlund
  • Patent number: 5403542
    Abstract: Method of manufacturing a sintered carbonitride alloy comprising wet milling powders of forming binder phase containing Co, Ni and mixture thereof and powder forming hard constituents of nitrides and carbonitrides with Ti as the main component to a mixture with desired composition; compacting said mixture to form compact; heating the compact at 100-300 C. in oxygen or air and subjecting said compact in multiple heating steps to effect sintering.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: April 4, 1995
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Rolf G. Oskarsson, Per Gustafsson
  • Patent number: 5403541
    Abstract: Method of making sintered insert for milling and turning formed of a titanium-based carbonitride containing hard constituents and binder phase metal comprising milling at least one hard constituent with binder phase metal, adding a second hard constituent at a later time during milling, pressing and sintering the pressed constituents to form the insert.
    Type: Grant
    Filed: May 6, 1992
    Date of Patent: April 4, 1995
    Assignee: Sandvik AB
    Inventors: Rolf G. Oskarsson, Gerold Weinl, Ake stlund
  • Patent number: 5334459
    Abstract: There is now provided a tool for chipforming machining of metals and similar materials comprising a high speed steel core and a cover of more wear resistant material than the core. If the material in the core has a carbon content 0.05-0.25% lower than the conventional carbon content for the high speed steel in question, improved properties can be obtained.
    Type: Grant
    Filed: June 16, 1993
    Date of Patent: August 2, 1994
    Assignee: Sandvik AB
    Inventors: Rolf G. Oskarsson, Mats O. Lundstrom
  • Patent number: 5330553
    Abstract: A sintered titanium-based carbonitride alloy contains hard constituents based on, in addition to Ti, W and/or Mo, one or more of the metals Zr, Hf, V, Nb, Ta or Cr in 5-30% binder phase based on Cobalt and/or nickel. The content of tungsten and/or molybdenum, preferably molybdenum in the binder phase is >1.5 times higher than in the rim and >3.5 times higher than in the core of adjacent hard constituent grains. The alloy is produced by a particular method.
    Type: Grant
    Filed: May 22, 1992
    Date of Patent: July 19, 1994
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Rolf G. Oskarsson, Per Gustafsson
  • Patent number: 5306326
    Abstract: A sintered body of titanium based carbonitride alloy containing hard constituents based on, in addition to titanium, one or more of the metals Zr, Hf, V, Nb, Ta, Cr, No or W in 5-30% binder phase based on Co and/or Ni is disclosed. The body has a binder phase enriched surface zone with a higher binder phase content than in the inner portion of the body in combination with an enrichment of simple hard constituents, i.e., the share of grains with core-rim structure is lower in the surface zone than in the inner of the body.
    Type: Grant
    Filed: May 22, 1992
    Date of Patent: April 26, 1994
    Assignee: Sandvik AB
    Inventors: Rolf G. Oskarsson, Gerold Weinl
  • Patent number: 5137565
    Abstract: According to the present invention there is now provided a method of making a sintered titanium-based carbonitride alloy. According to the method, melt-metallurgical raw materials containing the metallic alloying elements for hard constituent-forming as well as binder phase-forming elements are melted and cast, using no intentional additions of the elements C, N, B and O, to form a pre-alloy which in solidified condition of brittle intermetallic phases with hard constituent-forming and binder phase-forming elements mixed in atomic scale. The pre-alloy is crushed and/or milled to powder with grain size <50 .mu.m. The powder is carbonitrided for simultaneous formation in situ of extremely fine-grained <0.1 .mu.m, hard constituent particles enclosed in their binder phase.
    Type: Grant
    Filed: December 17, 1991
    Date of Patent: August 11, 1992
    Assignee: Sandvik AB
    Inventors: Anders G. Thelin, Rolf G. Oskarsson, Gerold Weinl
  • Patent number: 5032174
    Abstract: The present invention relates to powder particles consisting of hard principles and binder metal for the manufacture of superior, uniquely fine-grained hard material alloys and to a procedure for the preparation of said particles.The preparation is performed in an economical way because the procedure starts from conventional melt metallurgical raw materials. A pre-alloy consisting of hard principle forming and binder phase forming elements is subjected to a heat treatment such as nitriding and carburizing after being crushed. The final product is particles composed by hard principle phases and binder metal phases formed "in situ" in an effective binding.
    Type: Grant
    Filed: October 26, 1989
    Date of Patent: July 16, 1991
    Assignee: Santrade Limited
    Inventors: Carl S. G. Ekemar, Rolf G. Oskarsson
  • Patent number: 4894090
    Abstract: The present invention relates to powder particles consisting of hard principles and binder metal for the manufacture of superior, uniquely fine-grained hard material alloys and to a procedure for the preparation of said particles.The preparation is performed in an economical way because the procedure starts from conventional melt metallurgical raw materials. A pre-alloy consisting of hard principle forming and binder phase forming elements is subjected to a heat treatment such as nitriding and carburizing after being crushed. The final product is particles composed by hard principle phases and binder metal phases formed "in situ" in an effective binding.
    Type: Grant
    Filed: February 25, 1988
    Date of Patent: January 16, 1990
    Assignee: Santrade Limited
    Inventors: Carl S. G. Ekemar, Rolf G. Oskarsson
  • Patent number: 4869974
    Abstract: According to the invention there is now provided a protecting plate in compound design for use such as splinter screen, composite armour etc. Said plate comprises elements built of alternate lamellas of a hard material rich in hard constituents and a tough material with a superior metallugical bond between the lamellas. The hard material comprises particles such as carbides, nitrides, oxides and/or borides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and/or Al in a matrix based on Fe, Co and/or Ni where the amount of hard constituents is 30-70 vol-% and the tough material essentially comprises Fe, Co and/or Ni base alloys, preferably steel.
    Type: Grant
    Filed: August 31, 1987
    Date of Patent: September 26, 1989
    Assignee: Sandvik AB
    Inventors: Rolf G. Oskarsson, Erik G. Eriksson
  • Patent number: 4849300
    Abstract: Tools for machining etc can according to the invention be made better and cheaper by being composed of a compound material forming core and cover resp of the tool. The core consists thereby of a material which is situated in the gap between cemented carbide and high speed steel regarding its properties and which contains 30-70 vol % hard constituents in the form of carbides, nitrides and/or carbonitrides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and/or W in a matrix based on Fe, Ni, and/or Co and that the cover comprises an alloy based on Fe, Co and/or Ni generally steel and preferably tool steel or stainless steel.
    Type: Grant
    Filed: November 8, 1985
    Date of Patent: July 18, 1989
    Assignee: Santrade Limited
    Inventors: Erik G. Eriksson, Rolf G. Oskarsson, Johan P. von Holst
  • Patent number: 4698205
    Abstract: A method of producing coolant channels in a metallic object such as a cutting tool whereby a blank is formed by at least one working step such as compaction etc. and the channels are formed by cores whereby the working takes place as a compaction at a temperature of at least 950.degree. C. and that the core thereafter is removed in a separate step.
    Type: Grant
    Filed: December 20, 1985
    Date of Patent: October 6, 1987
    Assignee: Santrade Limited
    Inventors: Rolf G. Oskarsson, Johan P. von Holst, Erik G. Eriksson
  • Patent number: 4618540
    Abstract: Wear parts or cutting tools, in which the part being exposed to wear is essentially an extremely difficultly grindable material (e.g., hard material), but in which the manufacture of the wear part or cutting tool requires considerable grinding operations can, according to the invention, be made better and cheaper forming the wear part or cutting tool of a compound material which is a wear-resistant (or difficult to grind) surface and a supporting surface of high speed steel or tool steel.
    Type: Grant
    Filed: May 2, 1984
    Date of Patent: October 21, 1986
    Assignee: Santrade Limited
    Inventors: Johan P. von Holst, Rolf G. Oskarsson
  • Patent number: 4145213
    Abstract: The alloy of the invention is of the type wherein 30-70% by volume of hard components are homogeneously dispersed in a matrix of binder metal (Fe, Co or Ni). The hard components are carbides or carbonitrides and/or borides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and/or W. The mean grain size of the hard component particles is between 0.01 and 1.0 micron and their grain size distribution, represented by the standard deviation S, in which S.sup.2 .ltoreq.(M/1+1.5 M.sup.z).sup.2 .mu.m.sup.2, not more than 15% of the grains are larger than 1.2 microns.
    Type: Grant
    Filed: May 17, 1976
    Date of Patent: March 20, 1979
    Assignee: Sandvik Aktiebolg
    Inventors: Rolf G. Oskarsson, Carl S. G. Ekemar