Patents by Inventor Rolf Jurgen Weese

Rolf Jurgen Weese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090849
    Abstract: The present invention relates to multispectral imaging. In order to improve an identification of relevant multispectral material transitions (in particular caused by injected contrast agent), an apparatus is proposed to use the local maxima of the variances and/or covariances of the intensities of the multi-channel images to locate material transitions. In comparison to gradient vectors, the local variance is not directed and not prone to noise. An alternative apparatus is proposed to use the local covariance deficits of the intensities of the multi-channel images to locate material transitions. The proposed alternative approach is independent of spatial drifts across the image volume.
    Type: Application
    Filed: November 28, 2021
    Publication date: March 21, 2024
    Inventors: RAFAEL WIEMKER, LIRAN GOSHEN, HANNES NICKISCH, CLAAS BONTUS, TOM BROSCH, JOCHEN PETERS, ROLF JÜRGEN WEESE
  • Publication number: 20240021320
    Abstract: A system and method for training a deep learning network with previously read image studies to provide a prioritized worklist of unread image studies. The method includes collecting training data including a plurality of previously read image studies, each of the previously read image studies including a classification of findings and radiologist-specific data. The method includes training the deep learning neural network with the training data to predict an urgency score for reading of an unread image study.
    Type: Application
    Filed: November 11, 2021
    Publication date: January 18, 2024
    Inventors: NICOLE SCHADEWALDT, ROLF JÜRGEN WEESE, MATTHIAS LENGA, AXEL SAALBACH, STEFFEN RENISCH, HEINRICH SCHULZ
  • Patent number: 11861839
    Abstract: A system and computer-implemented method are provided for preprocessing medical image data for machine learning. Image data is accessed which comprises an anatomical structure. The anatomical structure in the image data is segmented to obtain a segmentation of the anatomical structure as a delineated part of the image data. A grid is assigned to the delineated part of the image data, the grid representing a partitioning of an exterior and interior of the type of anatomical structure using grid lines, wherein said assigning comprises adapting the grid to fit the segmentation of the anatomical structure in the image data. A machine learning algorithm is then provided with an addressing to the image data in the delineated part on the basis of coordinates in the assigned grid. In some embodiments, the image data of the anatomical structure may be resampled using the assigned grid.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: January 2, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Alexandra Groth, Tom Brosch, Jochen Peters
  • Patent number: 11830197
    Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: November 28, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Alexandra Groth, Jochen Peters
  • Patent number: 11769599
    Abstract: A system and method are provided for use in evaluating a clinical guideline which is represented in a machine readable version by a decision tree comprising at least one node and a decision rule associated with the node. The decision rule comprises at least one variable representing a biomedical quantity. The biomedical quantity is extracted from the patient data using an ontology which defines concepts and their relationships in a medical domain of the clinical guideline and which thereby relates the variable of the decision rule to the patient data. If said extraction is not possible, a view of the patient data is presented to the user to enable the user to determine the biomedical quantity from the view. Advantageously, the user is assisted in evaluating the clinical guideline even when it is not possible to automatically extract the biomedical quantity from the patient data.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: September 26, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tilman Wekel, Alexandra Groth, Rolf Jürgen Weese
  • Publication number: 20230248996
    Abstract: The present application describes a computing system, a computer readable medium, and/or related method for supporting decision making in adaptive therapy. An input interface of receives an input image. A machine learning module predicts, based at least in part on the input image, a dose distribution associated with a first planning technique or a first treatment modality. A comparator compares a planned dose distribution as per a current treatment plan with the predicted dose distribution, to obtain a comparison result. The comparison result enables a user to gauge whether an actual re-planning would yield a dosimetric benefit before committing time or computational resources.
    Type: Application
    Filed: July 5, 2021
    Publication date: August 10, 2023
    Inventors: MARIA LUIZA BONDAR, ROLF JÜRGEN WEESE, TORBJOERN VIK, TOM BROSCH, JENS WIEGERT, HARALD SEPP HEESE
  • Patent number: 11715196
    Abstract: The present invention relates to an image processing apparatus for deriving multi-dimensional images of an object and an according system and method. The image processing apparatus comprises an interface configured to provide 3D image data of an object and to provide a sequence of images of the object. The image processing apparatus further comprises a processing unit configured to obtain a personalized 3D model of the object by applying a model-based segmentation to the 3D image data of the object and to adapt the personalized 3D model based on at least a part of the images of the sequence of images of the object.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: August 1, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Arne Ewald, Frank Michael Weber, Rolf Jurgen Weese
  • Patent number: 11669636
    Abstract: A system (100) and computer-implemented method are provided for data collection for distributed machine learning of a machine learnable model. A privacy policy data (050) is provided defining computer-readable criteria for limiting a selection of medical image data (030) to a subset of the medical image data to obfuscate an identity of the at least one patient. The medical image data is selected based on the computer-readable criteria to obtain privacy policy-compliant training data (060) for transmission to another entity. The system and method enable medical data collection at clinical sites without requiring manual oversight, and enables such selections to be made automatically, e.g., based on a request for medical image data which may be received from outside of the clinical site.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: June 6, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Arne Ewald, Tim Nielsen, Karsten Sommer, Irina Waechter-Stehle, Christophe Michael Jean Schülke, Frank Michael Weber, Rolf Jürgen Weese, Jochen Peters
  • Publication number: 20230074125
    Abstract: Disclosed herein is a medical system (100, 300) comprising a display (112) and a user interface (114). The execution of machine executable instructions (120) causes a processor (104) to: receive (200) three-dimensional medical image data (122) of an anatomical structure (128, 322); receive (202) a three-dimensional segmentation (124) with one or more reference locations (800); display (204) at least one two-dimensional slice (126) of the three-dimensional medical image data; render (206) a cross section (134) of the three-dimensional segmentation, provide (208) a control element (130) of the user interface that is configured for receiving a one-dimensional position of the at least one reference location along a predetermined one-dimensional path (806); receive (210) the one-dimensional position (137) from the control element; adjust (212) the three-dimensional segmentation (124) using the one-dimensional position; and update (214) the rendering of the cross section of the three-dimensional segmentation.
    Type: Application
    Filed: February 7, 2021
    Publication date: March 9, 2023
    Inventors: FRANK MICHAEL WEBER, JOCHEN PETERS, ROLF JÜRGEN WEESE
  • Patent number: 11593691
    Abstract: An information retrieval system (IPS). The system comprises an input interface (IN) for receiving a query related to an object of interest. A concept mapper (CM) is configured to map the query to one or more associated concept entries of a hierarchic graph data structure (ONTO). The entries in said structure encode linguistic descriptors of components of a model (GM) for said object (OB). A metric-mapper (MM) is configured to map the query to one or more metric relationship descriptors. A geo-mapper (GEO) is configured to map said concept entries against the geometric model linked to the hierarchic graph data structure to obtain spatio-numerical data associated with said linguistic descriptors. A metric component (MTC) is configured to compute one or more metric or spatial relationships between said object components based on the spatio-numerical data and the one or more metric relationship descriptors.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: February 28, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jurgen Weese, Alexandra Groth, Tilman Wekel, Vincent Maurice Andre Auvray, Raoul Florent, Romane Isabelle Marie-Bernard Gauriau
  • Publication number: 20230011809
    Abstract: The invention relates to a system and computer-implemented method for enabling correction of a segmentation of an anatomical structure in 3D image data. The segmentation may be provided by a mesh which is applied to the 3D image data to segment the anatomical structure. The correction may for example involve a user directly or indirectly selecting a mesh part, such as a mesh point, that needs to be corrected. The behaviour of the correction, e.g., in terms of direction, radius/neighbourhood or strength, may then be dependent on the mesh normal direction, and in some embodiments, on a difference between the mesh normal direction and the orientation of the viewing plane.
    Type: Application
    Filed: December 21, 2020
    Publication date: January 12, 2023
    Inventors: ALEXANDRA GROTH, FRANK MICHAEL WEBER, JOCHEN PETERS, ROLF JÜRGEN WEESE
  • Publication number: 20230001236
    Abstract: The invention relates to a system for determining a radiation therapy plan for a radiation therapy system (100), comprising a multi-leaf collimator. The radiation therapy plan determination system (110) comprises a therapy system characteristics providing unit (111), wherein the characteristics comprise possible leaf positions and possible radiation fluence values, a planning objectives providing unit (112), wherein the planning objectives are indicative of a desired therapeutic radiation dose distribution, an optimization function providing unit (113), wherein the optimization function is indicative of a deviation of a radiation dose distribution from the planning objectives and of an uncertainty of the radiation dose distribution at edges of the possible apertures, and a therapy plan optimization unit (114) adapted to determine a sequence of possible apertures and possible radiation fluence values for which the optimization function is optimized.
    Type: Application
    Filed: November 25, 2020
    Publication date: January 5, 2023
    Inventors: HARALD SEPP HEESE, TORBJOERN VIK, ROLF JÜRGEN WEESE
  • Patent number: 11468567
    Abstract: A system and method are provided for display of medical image data, with the display of the medical image data being determined on the basis of schematic image data of a schematic representation of an anatomical structure. The schematic representation may provide a particular view of the anatomical structure. The type of anatomical structure and the view of the anatomical structure provided by the schematic representation may be determined based on one or more image features in the schematic image data. The view may be characterized as a geometrically-defined perspective at which the anatomical structure is shown in the schematic representation. An output image may be generated showing the anatomical structure in the medical image data in accordance with said determined geometrically-defined perspective. A user may thus be provided with a display of medical image data which is easier to interpret having considered said schematic representation.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: October 11, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexandra Groth, Axel Saalbach, Rolf Jürgen Weese
  • Publication number: 20220319010
    Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.
    Type: Application
    Filed: June 15, 2022
    Publication date: October 6, 2022
    Inventors: Rolf Jürgen WEESE, Alexandra GROTH, Jochen PETERS
  • Publication number: 20220240910
    Abstract: A system (SYS) for supporting a medical procedure, comprising an interface (IN) for receiving at least one medical input signal that describes a state of a target anatomy. A signal analyzer (SA) is configured to analyze the medical input signal to determine a time window for deployment of a cardio-vascular device (CL) to be deployed by a deployment.
    Type: Application
    Filed: July 28, 2020
    Publication date: August 4, 2022
    Inventors: Irina WAECHTER-STEHLE, Rolf Jürgen WEESE, Alexandra GROTH, Dirk SCHAEFER, Arne EWALD, Sven KROENKE
  • Patent number: 11393099
    Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 19, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Alexandra Groth, Jochen Peters
  • Patent number: 11383103
    Abstract: The invention relates to a system for assisting in evaluating a contour of an anatomic structure (22) with respect to a dose distribution corresponding to a treatment plan for a radiation therapy treatment of a patient. The system comprises an evaluation unit particularly configured to evaluate the dose distribution in varying distances from the contour of the anatomic structure (22) to determine at least one point where the evaluated dose distribution fulfills a predetermined condition, and to determine the distance between the at least one point and the contour and/or to visualize the at least one point to a user of the system.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 12, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Steffen Renisch, Hrishikesh Narayanrao Deshpande, Heinrich Schulz, Sven Kabus, Stéphane Allaire, Alfonso Agatino Isola, Christoph Neukirchen, Maria Luiza Bondar, Jens Wiegert
  • Publication number: 20220168592
    Abstract: A device for optimizing a radiation therapy plan (30) for delivering therapeutic radiation to a patient using a therapeutic radiation source (16) while modulated by a multi-leaf collimator (MLC) (14) includes at least one electronic processor (25) connected to a radiation therapy device (12). A non-transitory computer readable medium (26) stores instructions readable and executable by the at least one electronic processor to perform a radiation therapy plan optimization method (102) including: optimizing MLC settings of the MLC respective to an objective function wherein the MLC settings define MLC leaf tip positions for a plurality of rows of MLC leaf pairs at a plurality of control points (CPs). The optimizing is performed in two or more iterations with a resolution of the MLC settings increasing in successive iterations.
    Type: Application
    Filed: March 27, 2020
    Publication date: June 2, 2022
    Inventors: Christoph NEUKIRCHEN, Alfonso Agatino ISOLA, Harald Sepp HEESE, Torbjoern VIK, Rolf Jürgen WEESE, Matthieu Frédéric BAL
  • Publication number: 20220163612
    Abstract: Slice alignment approaches are described for short axis cardiac magnetic resonance cine slice stacks, which do not require additional scans, such as long axis scans or full 3D scans, and which are able to deal with cardiac structures having complex shapes. Both approaches do not need contours to follow a quadratic curvature function, and are well suitable for the purpose of obtaining a segmentation of a cardiac structure using a deformable surface model. Namely, such a deformable surface model is unable, but also not desired, to fully adapt to the ‘zig-zag’-shaped pattern in the boundary of the cardiac structure due to the slice misalignment. Having removed or reduced the misalignment between image slices, such a deformable surface model may better adapt to the cardiac structure in the image data and 10 thereby provide a better segmentation of the cardiac structure.
    Type: Application
    Filed: March 24, 2020
    Publication date: May 26, 2022
    Inventors: JOCHEN PETERS, ROLF JURGEN WEESE, TOBIAS WISSEL, FRANK MICHAEL WEBER
  • Patent number: 11341651
    Abstract: There is provided a method and apparatus for refining a model of an anatomical structure in an image. A model for the anatomical structure in the image is acquired. The model comprises a plurality of control points, each control point corresponding to a feature in the anatomical structure. The model is placed in the image with respect to the anatomical structure. Based on a user input received to adjust the model in the image, a position of at least one of the plurality of control points is adjusted to alter a shape of the model to the anatomical structure in the image, wherein adjustment of the position of one or more of the at least one control points is restricted based on information relating to the at least one control point.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: May 24, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jochen Peters, Frank Michael Weber, Rolf Jürgen Weese