Patents by Inventor Rolf Stephan

Rolf Stephan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9589191
    Abstract: The invention relates to a method for evaluating a plurality of chronologically staggered images, said method comprising the following steps: detecting a plurality of objects in a first image and storing each of the plurality of objects as tracks with a first capture time and/or a first capture location, preferably in a track list, detecting a plurality of objects in further images and identifying each of the detected objects as an object assigned to the respective stored track, wherein the respective track is updated by the current position of the identified object and, in the respective further images, objects detected for the first time are stored with assigned tracks, and wherein a covered path length, a distance and/or a time difference from the first capture time is determined as a capture period for each of the objects or tracks, wherein the path length, the distance and/or the capture period are compared with a respective predefined threshold value, and wherein the objects or tracks are classifie
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 7, 2017
    Assignee: Hella KGAA Hueck & Co.
    Inventors: Marko Stefanovic, Rolf-Stephan Badura, Jan Karsch
  • Patent number: 8871586
    Abstract: In one example, the method includes forming a plurality of isolation structures in a semiconducting substrate that define first and second active regions where first and second transistor devices, respectively, will be formed, forming a hard mask layer on a surface of the substrate above the first and second active regions, wherein the hard mask layer comprises at least one of carbon, fluorine, xenon or germanium ions, performing a first etching process to remove a portion of the hard mask layer and expose a surface of one of the first and second active regions, after performing the first etching process, forming a channel semiconductor material on the surface of the active region that was exposed by the first etching process, and after forming the channel semiconductor material, performing a second etching process to remove remaining portions of the hard mask layer that were not removed during the first etching process.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: October 28, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thilo Scheiper, Jan Hoentschel, Markus Lenski, Rolf Stephan
  • Patent number: 8846513
    Abstract: When forming self-aligned contact elements in sophisticated semiconductor devices in which high-k metal gate electrode structures are to be provided on the basis of a replacement gate approach, the self-aligned contact openings are filled with an appropriate fill material, such as polysilicon, while the gate electrode structures are provided on the basis of a placeholder material that can be removed with high selectivity with respect to the sacrificial fill material. In this manner, the high-k metal gate electrode structures may be completed prior to actually filling the contact openings with an appropriate contact material after the removal of the sacrificial fill material. In one illustrative embodiment, the placeholder material of the gate electrode structures is provided in the form of a silicon/germanium material.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 30, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Richard Carter, Rolf Stephan
  • Patent number: 8796807
    Abstract: By incorporating germanium material into thermal sensing diode structures, the sensitivity thereof may be significantly increased. In some illustrative embodiments, the process for incorporating the germanium material may be performed with high compatibility with a process flow for incorporating a silicon/germanium material into P-channel transistors of sophisticated semiconductor devices. Hence, temperature control efficiency may be increased with reduced die area consumption.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: August 5, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Rolf Stephan, Markus Forsberg, Gert Burbach, Anthony Mowry
  • Patent number: 8735236
    Abstract: When forming sophisticated high-k metal gate electrode structures on the basis of a replacement gate approach, the fill conditions upon filling in the highly conductive electrode metal, such as aluminum, may be enhanced by removing the final work function metal, for instance a titanium nitride material in P-channel transistors, only preserving a well-defined bottom layer.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: May 27, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Klaus Hempel, Christopher Prindle, Rolf Stephan
  • Publication number: 20140113419
    Abstract: In one example, the method includes forming a plurality of isolation structures in a semiconducting substrate that define first and second active regions where first and second transistor devices, respectively, will be formed, forming a hard mask layer on a surface of the substrate above the first and second active regions, wherein the hard mask layer comprises at least one of carbon, fluorine, xenon or germanium ions, performing a first etching process to remove a portion of the hard mask layer and expose a surface of one of the first and second active regions, after performing the first etching process, forming a channel semiconductor material on the surface of the active region that was exposed by the first etching process, and after forming the channel semiconductor material, performing a second etching process to remove remaining portions of the hard mask layer that were not removed during the first etching process.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Thilo Scheiper, Jan Hoentschel, Markus Lenski, Rolf Stephan
  • Publication number: 20140037141
    Abstract: The invention relates to a method for evaluating a plurality of chronologically staggered images, said method comprising the following steps: detecting a plurality of objects in a first image and storing each of the plurality of objects as tracks with a first capture time and/or a first capture location, preferably in a track list, detecting a plurality of objects in further images and identifying each of the detected objects as an object assigned to the respective stored track, wherein the respective track is updated by the current position of the identified object and, in the respective further images, objects detected for the first time are stored with assigned tracks, and wherein a covered path length, a distance and/or a time difference from the first capture time is determined as a capture period for each of the objects or tracks, wherein the path length, the distance and/or the capture period are compared with a respective predefined threshold value, and wherein the objects or tracks are classifie
    Type: Application
    Filed: February 17, 2012
    Publication date: February 6, 2014
    Applicant: Hella KGAA Hueck & Co.
    Inventors: Marko Stefanovic, Rolf-Stephan Badura, Jan Karsch
  • Publication number: 20130168773
    Abstract: When forming sophisticated high-k metal gate electrode structures on the basis of a replacement gate approach, the fill conditions upon filling in the highly conductive electrode metal, such as aluminum, may be enhanced by removing the final work function metal, for instance a titanium nitride material in P-channel transistors, only preserving a well-defined bottom layer.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Klaus Hempel, Christopher Prindle, Rolf Stephan
  • Publication number: 20130115773
    Abstract: When forming sophisticated high-k metal gate electrode structures on the basis of a replacement gate approach, pronounced loss of the interlayer dielectric material may be avoided by inserting at least one surface modification process, for instance in the form of a nitridation process. In this manner, leakage paths caused by metal residues formed in the interlayer dielectric material may be significantly reduced.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Rohit Pal, Rolf Stephan, Andreas Ott
  • Publication number: 20130075821
    Abstract: When forming self-aligned contact elements in sophisticated semiconductor devices in which high-k metal gate electrode structures are to be provided on the basis of a replacement gate approach, the self-aligned contact openings are filled with an appropriate fill material, such as polysilicon, while the gate electrode structures are provided on the basis of a placeholder material that can be removed with high selectivity with respect to the sacrificial fill material. In this manner, the high-k metal gate electrode structures may be completed prior to actually filling the contact openings with an appropriate contact material after the removal of the sacrificial fill material. In one illustrative embodiment, the placeholder material of the gate electrode structures is provided in the form of a silicon/germanium material.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Peter Baars, Richard Carter, Rolf Stephan
  • Patent number: 8293610
    Abstract: By providing a CMP stop layer in a metal gate stack, the initial height thereof may be efficiently reduced after the definition of the deep drain and source areas, thereby providing enhanced process conditions for forming highly stressed dielectric materials. Consequently, the dielectric material may be positioned more closely to the channel region substantially without deteriorating gate conductivity.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: October 23, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sven Beyer, Rolf Stephan, Martin Trentzsch, Patrick Press
  • Patent number: 8288256
    Abstract: By combining an anneal process for adjusting the effective channel length and a substantially diffusion-free anneal process performed after a deep drain and source implantation, the vertical extension of the drain and source region may be increased substantially without affecting the previously adjusted channel length. In this manner, in SOI devices, the drain and source regions may extend down to the buried insulating layer, thereby reducing the parasitic capacitance, while the degree of dopant activation and thus series resistance in the extension regions may be improved. Furthermore, less critical process parameters during the anneal process for adjusting the channel length may provide the potential for reducing the lateral dimensions of the transistor devices.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: October 16, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Feudel, Rolf Stephan, Manfred Horstmann
  • Patent number: 8158065
    Abstract: By providing a tool internal sensor device in a process tool in a semiconductor facility, metal contamination may be monitored in situ, thereby avoiding or at least significantly reducing the requirement for sophisticated sample preparation techniques, such as vapor phase decomposition tests in combination with subsequent analysis procedures. Thus, a full time inspection of process tools may be accomplished.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 17, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Martin Trentzsch, Stephan Kronholz, Rolf Stephan
  • Patent number: 8119461
    Abstract: By performing a heat treatment on the basis of a hydrogen ambient, exposed silicon-containing surface portions may be reorganized prior to the formation of gate dielectric materials. Hence, the interface quality and the material characteristics of the gate dielectrics may be improved, thereby reducing negative bias temperature instability effects in highly scaled P-channel transistors.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: February 21, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Martin Trentzsch, Thorsten Kammler, Rolf Stephan
  • Publication number: 20120025276
    Abstract: By incorporating germanium material into thermal sensing diode structures, the sensitivity thereof may be significantly increased. In some illustrative embodiments, the process for incorporating the germanium material may be performed with high compatibility with a process flow for incorporating a silicon/germanium material into P-channel transistors of sophisticated semiconductor devices. Hence, temperature control efficiency may be increased with reduced die area consumption.
    Type: Application
    Filed: October 3, 2011
    Publication date: February 2, 2012
    Inventors: Rolf Stephan, Markus Forsberg, Gert Burbach, Anthony Mowry
  • Patent number: 8003460
    Abstract: According to an illustrative example, a method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first feature and a second feature. A material layer is formed over the first feature and the second feature. A mask is formed over the first feature. At least one etch process adapted to form a sidewall spacer structure adjacent the second feature from a portion of the material layer is performed. The mask protects a portion of the material layer over the first feature from being affected by the at least one etch process. An ion implantation process is performed. The mask remains over the first feature during the ion implantation process.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: August 23, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Frank Wirbeleit, Rolf Stephan, Peter Javorka
  • Publication number: 20110045665
    Abstract: By performing a heat treatment on the basis of a hydrogen ambient, exposed silicon-containing surface portions may be reorganized prior to the formation of gate dielectric materials. Hence, the interface quality and the material characteristics of the gate dielectrics may be improved, thereby reducing negative bias temperature instability effects in highly scaled P-channel transistors.
    Type: Application
    Filed: November 1, 2010
    Publication date: February 24, 2011
    Inventors: Martin Trentzsch, Thorsten Kammler, Rolf Stephan
  • Publication number: 20100203698
    Abstract: A method of forming a semiconductor structure comprises providing a semiconductor substrate. A feature is formed over the substrate. The feature is substantially homogeneous in a lateral direction. A first ion implantation process adapted to introduce first dopant ions into at least one portion of the substrate adjacent the feature is performed. The length of the feature in the lateral direction is reduced. After the reduction of the length of the feature, a second ion implantation process adapted to introduce second dopant ions into at least one portion of the substrate adjacent the feature is performed. The feature may be a gate electrode of a field effect transistor to be formed over the semiconductor substrate.
    Type: Application
    Filed: April 20, 2010
    Publication date: August 12, 2010
    Inventors: Frank Wirbeleit, Rolf Stephan, Manfred Horstmann
  • Patent number: 7745334
    Abstract: By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 29, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Patrick Press, Karla Romero, Martin Trentzsch, Karsten Wieczorek, Thomas Feudel, Markus Lenski, Rolf Stephan
  • Patent number: 7727827
    Abstract: A method of forming a semiconductor structure comprises providing a semiconductor substrate. A feature is formed over the substrate. The feature is substantially homogeneous in a lateral direction. A first ion implantation process adapted to introduce first dopant ions into at least one portion of the substrate adjacent the feature is performed. The length of the feature in the lateral direction is reduced. After the reduction of the length of the feature, a second ion implantation process adapted to introduce second dopant ions into at least one portion of the substrate adjacent the feature is performed. The feature may be a gate electrode of a field effect transistor to be formed over the semiconductor substrate.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: June 1, 2010
    Assignee: GlobalFoundries Inc.
    Inventors: Frank Wirbeleit, Rolf Stephan, Manfred Horstmann