Patents by Inventor Rolf Wilkenhoener

Rolf Wilkenhoener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120285933
    Abstract: A method for directionally compacting a weld seam during build-up welding is provided. The method is used for the build-up welding of a component substrate that is compacted in a directional manner and comprises dendrites which extend in a substrate dendrite direction. The method parameters with respect to feed, laser power, weld beam diameter, powder beam focus and/or powder mass flow are designed such that they result in a local orientation of the temperature gradient to the solidification front, which is smaller than 45° with respect to the substrate dendrite direction of the dendrites in the substrate, wherein the relative speed is between 30 mm/mm and 100 mm/mm, and/or the power is between 200 W and 500 W, and/or the diameter of the laser beam on the surface of the substrate is between 3 mm and 6 mm, and/or the mass feed rate is between 30 mg/mm and 600 mg/mm.
    Type: Application
    Filed: November 15, 2010
    Publication date: November 15, 2012
    Inventors: Nikolai Arjakine, Georg Bostanjoglo, Bernd Burbaum, Andres Gasser, Torsten Jambor, Stefanie Linnenbrink, Torsten Melzer-jokisch, Selim Mokadem, Michael Ott, Norbert Pirch, Rolf Wilkenhöner
  • Publication number: 20120273468
    Abstract: A process for the directional solidification of a weld seam during build up welding is provided which includes the targeted selection of process parameters for laser welding, feeding, laser power beam diameter, and powder mass flow. The temperature gradient substantially decisive for single crystal growth during laser application welding can be set deliberately.
    Type: Application
    Filed: November 3, 2010
    Publication date: November 1, 2012
    Inventors: Nikolai Arjakine, Georg Bostanjoglo, Bernd Burbaum, Andres Gasser, Torsten Jambor, Stefanie Linnenbrink, Torsten Melzer-Jokisch, Selim Mokadem, Michael Ott, Norbert Pirch, Rolf Wilkenhöner
  • Publication number: 20120267347
    Abstract: A welding method for welding workpieces made of highly heat-resistant superalloys is provided. The method includes generating a heat input zone on the workpiece surface by means of a heat source, feeding welding filler material into the heat input zone by means of a feeding device, and generating a relative motion between the heat source and the feeding device on one hand and the workpiece surface on the other hand by means of a conveying device. Furthermore, according to the welding method, the mass feed rate is ?350 mg/min.
    Type: Application
    Filed: November 10, 2010
    Publication date: October 25, 2012
    Inventors: Nikolai Arjakine, Georg Bostanjoglo, Bernd Burbaum, Andres Gasser, Torsten Jambor, Stefanie Linnenbrink, Torsten Melzer-Jokisch, Selim Mokadem, Michael Ott, Norbert Pirch, Rolf Wilkenhöner
  • Publication number: 20120179285
    Abstract: A method and system for automated repair of a machine component is provided. According to the proposed method, a first geometry of the component, including a damaged portion of the component, is digitalized. A trough is then machined over the damaged portion of the component. The machining is numerically controlled using digitalized geometrical data of the first geometry of the component. A second geometry of the component is then digitalized subsequent to the machining, the second geometry including the trough. Subsequently, a material is deposited over the trough. The deposition of the material is numerically controlled digitalized geometrical data of the second geometry of the component.
    Type: Application
    Filed: August 16, 2010
    Publication date: July 12, 2012
    Inventors: Torsten Melzer-Jokisch, Dimitrios Thomaidis, Rolf Wilkenhöner
  • Publication number: 20120103950
    Abstract: A process for welding a component in which a recess is filled by welding tracks is provided. The process includes providing a recess with a contour which delimits an outer upper surface of the component with respect to the recess. The welding tracks are laid such that the welding tracks also reach the surface outside a contour of the recess and that a plurality of welding layers are used in order to fill the recess until a last layer protrudes completely beyond the surface.
    Type: Application
    Filed: March 31, 2010
    Publication date: May 3, 2012
    Inventors: Nikolai Arjakine, Georg Bostanjoglo, Bernd Burbaum, Andres Gasser, Torsten Jambor, Stefanie Linnenbrink, Torsten Melzer-Jokisch, Michael Ott, Norbert Pirch, Rolf Wilkenhöner
  • Patent number: 8125219
    Abstract: A method for determining and evaluating eddy-current displays, in particular cracks, in a test object made from an electrically conductive material is provided. The method uses the following steps, applying an alternating electromagnetic field of a predetermined constant or variable frequency to the test object, detecting the eddy currents induced in the test object along predetermined parallel measuring tracks, providing eddy-current signals each eddy-current signal is assigned to a measuring track, conditioning the eddy-current signals and providing conditioned measured variables, interpreting the conditioned measured variables using a predetermined evaluation algorithm, and providing synthetic crack signals.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: February 28, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Matthias Jungbluth, Rolf Wilkenhöner
  • Publication number: 20110259363
    Abstract: The removal of a coating from components after they have been used is often achieved using various acid baths and salt melts. A coating removal process that includes only using hydrochloric acid is provided. The duration of the process in which the coating is treated with the hydrochloric acids has a duration of between 2 and 2.5 hours. The process includes treated the coating with the hydrochloric acid at least twice.
    Type: Application
    Filed: September 10, 2009
    Publication date: October 27, 2011
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Jens Birkner, Jan Steinbach, Rolf Wilkenhöner
  • Publication number: 20110089150
    Abstract: A welding apparatus for welding workpieces of high-temperature superalloys is provided. The welding apparatus includes a heat source for producing a heat input zone on the workpiece surface, a supplying device for supplying welding filler into the heat input zone and a transporting device for producing a relative movement between the heat source and the supplying device on the one hand and the workpiece surface on the other hand. The welding apparatus further includes a control unit with a control program, which carries out the relative movement in such a way that the welding power and the diameter of the heat input zone are set such that the cooling rate during the solidifying of the material is at least 8000 Kelvins per second.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 21, 2011
    Inventors: Nikolai Arjakine, Georg Bostanjoglo, Bernd Burbaum, Andres Gasser, Torsten Jambor, Stefanie Linnenbrink, Torsten Melzer-Jokisch, Michael Ott, Norbert Pirch, Rolf Wilkenhöner
  • Patent number: 7915566
    Abstract: The invention relates to a weld filler and to a use of a weld filler which significantly improves the weldability of some nickel-based superalloys and includes the following constituents (in wt %): 17.5%-20.0% chromium (Cr) 10.0%-12.0% cobalt (Co) 9.0%-10.5% molybdenum (Mo) 0.1%-3.3% titanium, in particular 3.0%-3.3% titanium (Ti), 1.4%-1.8% aluminum (Al), 0.04%-0.12% carbon, 0.003%-0.01% boron (B), remainder nickel.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: March 29, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Nikolai Arjakine, Rolf Wilkenhöner
  • Publication number: 20110000890
    Abstract: In conventional hot wire welding, the deposition rate and temperature cannot be adjusted. A process for welding a component in which a heated welding wire is fed to the component is provided. Through the potential-free heating of the welding wire, the deposition rate and temperature may be further increased. A welding apparatus is also provided.
    Type: Application
    Filed: January 13, 2009
    Publication date: January 6, 2011
    Inventors: Nikolai Arjakine, Rolf Wilkenhöner
  • Publication number: 20100163142
    Abstract: Superalloy solidified in a directional manner often cannot be subjected to heat treatment because the heat treatment leads to recrystallization. As a result of the temperature profile during a heat treatment according to the invention which oscillates in the manner of a pendulum, a recrystallization during heat treatment can be avoided because mechanical stresses are reduced thanks to the recurring succession of dissolutions and precipitations of the precipitate. The method can be applied to a Ni-based superalloy with ?-precipitates. After the cyclic heat treatment, the temperature can be adjusted to and maintained at a temperature which is the same as or higher than the complete dissolution temperature. An oscillating movement can also take place above the complete dissolution temperature.
    Type: Application
    Filed: March 15, 2007
    Publication date: July 1, 2010
    Inventors: Michael Ott, Rolf Wilkenhöner
  • Patent number: 7690112
    Abstract: Process and apparatus for producing a turbine component, turbine component and use of the apparatus Turbine components have to withstand high thermal and mechanical loads. It therefore proves advantageous for them to be made from a material with a preferred crystal orientation. Hitherto, the turbine components with a preferred crystal orientation have been produced as a single piece, with relatively high scrap rates. The proposed concept makes it possible to produce a preferred turbine component (9, 10) in a particularly simple way by assembling a turbine component (9, 10) at least from a first base part (1) and a build-up material (8), the subregion (7) of the joining zone having a preferred crystal orientation (2), so that disadvantageous properties of a joining zone without a preferred crystal orientation (2) which have hitherto been encountered are avoided.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: April 6, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Georg Bostanjoglo, Nigel-Philip Cox, Rolf Wilkenhöner
  • Publication number: 20100032414
    Abstract: An inert gas mixture including helium and nitrogen or helium and hydrogen or helium, hydrogen, and nitrogen for use during the welding of a nickel-based or cobalt-based substrate is provided. Also provided is a method for the welding of a substrate in which an inert gas mixture is used. The substrate used in the method may be nickel-based or cobalt-based.
    Type: Application
    Filed: March 23, 2007
    Publication date: February 11, 2010
    Inventors: Nikolai Arjakine, Rolf Wilkenhöner, Manuela Zinke
  • Patent number: 7653996
    Abstract: A method of repairing a crack in a component comprising a base material, in particular in a gas turbine blade, a suspension, which comprises a carrier liquid and at least one solid in the form of nanoparticles of the same material as the base material, being applied to the location to be repaired. A heat treatment of the component is carried out, the solid in the form of nanoparticles being melted and a bond with the base material being formed. During the heat treatment, the component is exposed to a thermal shock, in which a maximum temperature which corresponds to the melting temperature of the nanoparticles is reached. The nano size of the particles in the suspension causes a lowering of the melting point of these particles to take place, so that the structure of the base material does not change even at the melting temperature of the nanoparticles.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: February 2, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Matthias Jungbluth, Jan Steinbach, Rolf Wilkenhöner
  • Publication number: 20090297701
    Abstract: A method of repairing a component, in particular a gas turbine component, which is produced from a base material with an oriented microstructure, comprises the steps of: cleaning the repair site, filling the repair site with a filling material corresponding to the composition of the base material, carrying out a heat treatment in the region of the filled repair site, wherein the filling material has micro- and/or nano-scale particles, during the filling of the repair site measures which prevent the oxidation of the filling material are taken, an the temperatures and holding times of the heat treatment are set appropriately for the composition of the filling material and of the base material of the component in such a way that an epitaxial attachment of the filling material to the surrounding bas material takes place.
    Type: Application
    Filed: September 27, 2006
    Publication date: December 3, 2009
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Michael Ott, Ralph Reiche, Michael Rindler, Rolf Wilkenhöner
  • Publication number: 20090285715
    Abstract: The invention relates to a welding additive material, a use of a welding additive material, welding methods and a component which significantly improves the weldability of some nickel-based superalloys by means of a welding additive material and comprises the following constituents (in wt %): 18.0%-20.0% of chromium, 9.0%-11.0% of cobalt, 7.0%-10.0% of molybdenum, 2.0%-2.5% of titanium, 1.0%-1.7% of aluminum, 0.04%-0.08% of carbon, balance nickel.
    Type: Application
    Filed: February 16, 2007
    Publication date: November 19, 2009
    Inventors: Nikolai Arjakine, Uwe Paul, Rolf Wilkenhöner
  • Patent number: 7521926
    Abstract: The invention relates to a method for the nondestructive testing of a component, in which corrosion regions close to the surface, composed of oxidized carbides or sulfided base material close to the surface, are determined by means of an eddy current measurement. This allows the blades or vanes to be ground down and/or separated out in particular prior to a complex process of cleaning and coating the gas turbine blade or vane.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: April 21, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Beck, Ralph Reiche, Rolf Wilkenhöner
  • Patent number: 7455740
    Abstract: Methods according to prior art for producing three-dimensional molded bodies generally require outer molds which define the geometry of a component to be produced. The inventive method for producing three-dimensional molded bodies renders one such mold redundant. The geometry of a component to be produced is defined by a pre-determined laser guidance or by the geometry of the partial quantities used.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: November 25, 2008
    Assignee: Siemens Aktiengesellschaft
    Inventors: Georg Bostanjoglo, Nigel-Philip Cox, Rolf Wilkenhöner
  • Patent number: 7429337
    Abstract: The invention relates to a method for removing an area of a layer of a component consisting of metal or a metal compound. According to prior art, corrosion products of a component are removed in a first step by applying a molten mass or by heating in a voluminous powder bed. This requires high temperatures or a large amount of space. The inventive method for removing corrosion products of a component is characterized in that a cleaning agent is applied locally, which removes the corrosion products by means of a gaseous reaction product.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 30, 2008
    Assignees: Siemens Aktiengesellschaft, Diffusion Alloys, Ltd.
    Inventors: Norbert Czech, Andre Jeutter, Adrian Kempster, Ralph Reiche, Rolf Wilkenhöner
  • Patent number: 7306670
    Abstract: In the case of the epitaxial growth according to the prior art, a number o strips often have to be produced in a plane in order to restore an area to be repaired. This leads to overlapping and misorientation of the crystalline structures. In the case of the method according to the invention, the strip is of such a width that no overlapping occurs, since the width is adapted to the contour of the area to be repaired.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: December 11, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Beck, Georg Bostanjoglo, Nigel-Philip Cox, Rolf Wilkenhöner