Patents by Inventor Romain Fleury

Romain Fleury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230109939
    Abstract: A passive device comprising a hollow waveguide including first and second wall structures extending in a guiding direction, an interconnecting base extending between the wall structures and an enclosure extending between the wall structures, the enclosure being located opposite the interconnecting base; and at least one array of coupled resonant structures enclosed inside the waveguide, the array being configured to provide coupled local resonators and a microwave or millimeter wave frequency passband for providing at least one selected microwave or millimeter wave signal, the array extending along the guiding direction and being located between the wall structures. Each resonant structure extends from the interconnecting base into the hollow waveguide to define a microwave or millimeter wave subwavelength resonant structure, and successive resonant structures are separated by a microwave or millimeter wave subwavelength distance.
    Type: Application
    Filed: March 23, 2021
    Publication date: April 13, 2023
    Inventors: Romain FLEURY, Maliheh KHATIBI MOGHADDAM
  • Publication number: 20170125911
    Abstract: A metamaterial device exploiting parity-time symmetry to achieve ideal loss compensation. The metamaterial device includes metamaterials and metasurfaces that are engineered to respect space-time inversion symmetry, i.e., that are invariant after taking their mirror image and running time backwards. One such metamaterial device utilizes two resonators with loss and gain that exactly compensate each other thereby causing the metamaterial device to be invisible when excited from one side of the metamaterial device and reflective when excited from the other side of the metamaterial device. Furthermore, a metamaterial device may include an object covered by a portion of a metasurface with loss and another portion of the metasurface with gain, where the loss and gain exactly compensate each other. The first portion of the metasurface absorbs all of an incident wave, whereas, the second portion of the metasurface re-emits the incident wave.
    Type: Application
    Filed: May 28, 2015
    Publication date: May 4, 2017
    Applicant: Board of Regents, The University of Texas System
    Inventors: Andrea Alu, Romain Fleury, Dimitrios Sounas
  • Patent number: 9536512
    Abstract: A non-reciprocal acoustic device that accomplishes non-reciprocity via linear or angular-momentum bias. The non-reciprocal acoustic device includes an azimuthally symmetric or planar acoustical cavity (e.g., ring cavity), where the cavity is biased by imposing a circular or linear motion of a gas, a fluid or a solid medium filling the cavity. Acoustic waveguides are connected to the cavity or the cavity is excited from the surrounding medium. A port of this device is excited with an acoustic wave. When the cavity is biased appropriately, the acoustic wave is transmitted to one of the other acoustic waveguides while no transmission of the acoustic wave occurs at the other acoustic waveguides. As a result, linear non-reciprocity is now realized in acoustics without distorting the input signal or requiring high input power or bulky devices.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: January 3, 2017
    Assignee: Board of Regents, The University of Texas System
    Inventors: Andrea Alu, Romain Fleury, Dimitrios Sounas
  • Publication number: 20160203810
    Abstract: A non-reciprocal acoustic device that accomplishes non-reciprocity via linear or angular-momentum bias. The non-reciprocal acoustic device includes an azimuthally symmetric or planar acoustical cavity (e.g., ring cavity), where the cavity is biased by imposing a circular or linear motion of a gas, a fluid or a solid medium filling the cavity. Acoustic waveguides are connected to the cavity or the cavity is excited from the surrounding medium. A port of this device is excited with an acoustic wave. When the cavity is biased appropriately, the acoustic wave is transmitted to one of the other acoustic waveguides while no transmission of the acoustic wave occurs at the other acoustic waveguides. As a result, linear non-reciprocity is now realized in acoustics without distorting the input signal or requiring high input power or bulky devices.
    Type: Application
    Filed: August 4, 2014
    Publication date: July 14, 2016
    Inventors: Andrea Alu, Romain Fleury, Dimitrios Sounas