Patents by Inventor Roman Antosik

Roman Antosik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7190909
    Abstract: Method and apparatus are presented for the generation and detection of maintenance signals in an optical data network. The maintenance signals are such that they can be read both by high bit-rate and low bit-rate receivers. Detection of the maintenance signals occurs in two stages. In a low bit-rate first stage each nodal input port is sampled in a round robin fashion to detect the presence of a maintenance signal. In a high bit-rate second stage the maintenance signal is verified and read by a high speed receiver, along with other high bit-rate information transmitted with it. One second stage high speed receiver is shared among M input channels for cost and circuit efficiency.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: March 13, 2007
    Assignee: Alphion Corporation
    Inventors: Jayanta Das, Ganesh Lakshminarayana, Kuo-Ming Lee, Roman Antosik, Scott Kaminski, Jithamithra Sarathy, Boris Stefanov, Ronald Simprini, Bharat Dave
  • Publication number: 20050047713
    Abstract: A process for all-optical multi-bus networking of two-fiber bidirectional buses with two-fiber bidirectional Bus-To-Bus Links for a method of shared mesh protected Point-To-Point, Point-To-Multipoint and Broadcast Networking with the steps of: providing protected Bus-To-Bus service networking and Bus-To-Bus protection networking and in-service expansion with more buses, in place of networking with isolated rings connected through un-protected ring-to-ring connections, providing capacity expansion by replacement of single Wavelength Division Multiplexed (WDM) optical signals in few, wide bandwidth WDM channels with a plurality of optical signals Dense Wavelength Division Multiplexed (DWDM) to each WDM channel, and switching few WDM optical channels with small size modular Switching Fabrics, in place of high startup-cost, high capacity DWDM systems switching many DWDM optical signals with expensive and unreliable large size Switching Fabrics, providing the Add/Drop capability integrated with the Append/Drop-Con
    Type: Application
    Filed: August 28, 2003
    Publication date: March 3, 2005
    Inventor: Roman Antosik
  • Patent number: 6856767
    Abstract: The present invention provides an optical signal quality selection system for optimizing the quality of information transmission. The system splits an incoming optical signal into two equal signals. The split signals are evaluated in optical performance monitors, transmitting an electrical output message to a signal selector relating to the quality of the respective signal. A second electrical message is sent from the optical performance generator to an alarm indicator signal generator, which sends an optical signal to the signal selector to drop the one of the split signals and transmit the non-dropped split signal. An unequipped optical signal from an optical idle signal generator is triggered if no active optical signal is being transmitted.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: February 15, 2005
    Assignee: Alphion Corporation
    Inventors: Mohammad Laham, Raj Acharya, Roman Antosik, Jayantha Das, Bharat Dave, Chinnabbu Ekambaram, Khem Gandhi, Frank Hujber, David Lowe, Frederick Renner, Jiten Sarathy, Ronald Simprini, Boris Stefanov, Tan Thai, Ravi Vora
  • Patent number: 6822975
    Abstract: Circuitry for a node of an optical communication network has a mux and/or a demux. In one embodiment, the circuitry has a mux and a demux implemented on a single circuit board, where (1) the mux is configured to combine up to eight different incoming OC3/OC12-rate electrical signals into a single outgoing OC48-rate electrical signal for conversion into two copies of an outgoing OC48 optical signal and (2) the demux is configured to split a working incoming OC48-rate electrical signal (selected from two incoming OC48-rate electrical signals converted from two incoming OC48 optical signals) into up to eight different outgoing OC3/OC12-rate electrical signals. The node is configured to perform automatic signal provisioning, which may be (a) the addition of a new OC3/OC12 signal; (b) the deletion of an existing OC3/OC12 signal; (c) the rate-upgrading of an existing OC3 signal to an OC12 signal; or (d) the rate-downgrading of an existing OC12 signal to an OC3 signal.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: November 23, 2004
    Assignee: Lucent Technologies
    Inventors: Roman Antosik, Carl A. Caroli, Lewis K. Stroll, Richard L. Ukeiley, Stanley E. Wood
  • Patent number: 6792005
    Abstract: Circuitry for a node of an optical communication network is configured to mux (i.e., combine) one or more incoming customer signals for transmission as a single outgoing optical signal and to demux (i.e., split) an incoming optical signal into one or more outgoing customer signals, where the muxing and demuxing clocks are selected from one or more customer clocks recovered from the one or more customer signals, an input clock recovered from the incoming optical signal, and a local clock generated by a local clock generator. When configured for an add/drop configuration, the circuitry selects (1) the muxing clock from the one or more customer clocks, the input clock, and the local clock and (2) the demuxing clock from the input clock and the local clock. When configured for a drop/continue configuration, the circuitry is configured to select both the muxing and demuxing clocks from either the first input clock or the local clock.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: September 14, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Roman Antosik, Andrew Schnable, Lewis K. Stroll, Richard L. Ukeiley
  • Patent number: 6727991
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 27, 2004
    Assignee: Alphion Corporation
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Patent number: 6724484
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 20, 2004
    Assignee: Alphion Corporation
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Patent number: 6636318
    Abstract: A method and system for AO3R functionality is presented. The system includes an AO2R device followed by an AOCR clock recovery module and an AOR retiming device. The AOR retiming device takes as input a recovered clock signal extracted from the output of the AO2R by the AOCR clock recovery module. The output is the recovered clock signal gated by the regenerated and reshaped input signal, and a monitor circuit is used to set the optimum operations of the retiming device. In a first embodiment the output of the AOR retiming device is fed to an AOC code and wavelength conversion output stage, which returns the signal to the NRZ coding, on a service wavelength converted to match the fixed wavelength connection with the DWDM transmission system. In a second embodiment the code conversion is incorporated into the AOR retiming device, and wavelength conversion is accomplished in the AOCR clock recovery device.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: October 21, 2003
    Assignee: Alphion Corp.
    Inventors: Jithamithra Sarathy, Bharat Dave, Boris Stefanov, Ronald Simprini, Tan B. Thai, Roman Antosik, Aleksandr Miglo, Olga Nedzhvetska, Kwang Kim, Doruk Engin
  • Patent number: 6570697
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 27, 2003
    Assignee: Alphion Corporation
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Publication number: 20030067648
    Abstract: A method and apparatus are presented for implementing maintenance signaling in an optical data network, said method comprising the use of a finite set of optical symbols to distinguish between different classes of failures. The method is format and bit rate transparent, and a network element does not need to read bits to interpret a signaling message. Faults protected within the network are distinguished from faults originating outside the network, and power glitches are filtered out of incoming alarm signals originating outside the network.
    Type: Application
    Filed: April 8, 2002
    Publication date: April 10, 2003
    Inventors: Roman Antosik, Jayanta Das, Bharat Dave, Kuo-Ming Lee, David Lowe, Kwang Kim, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Thai, Wai-Ching Yu
  • Publication number: 20030016654
    Abstract: Method and apparatus are presented which define generic cross-connect primitives that enable the implementation of 1+1 protection in a mesh configured optical network. Such primitives are capable of supporting both 1+1 network protection as well as 1+1 client/access protection, or both. Further, the invention supports multicast applications at no additional architectural cost.
    Type: Application
    Filed: June 14, 2002
    Publication date: January 23, 2003
    Inventors: Jayanta Das, Ganesh Lakshminarayana, Kuo-Ming Lee, Roman Antosik, Scott Kaminski, Jithamithra Sarathy, Boris Stefanov, Ronald Simprini, Bharat Dave
  • Publication number: 20030011836
    Abstract: Method and apparatus are presented for the generation and detection of maintenance signals in an optical data network. The maintenance signals are such that they can be read both by high bit-rate and low bit-rate receivers. Detection of the maintenance signals occurs in two stages. In a low bit-rate first stage each nodal input port is sampled in a round robin fashion to detect the presence of a maintenance signal. In a high bit-rate second stage the maintenance signal is verified and read by a high speed receiver, along with other high bit-rate information transmitted with it. One second stage high speed receiver is shared among M input channels for cost and circuit efficiency.
    Type: Application
    Filed: June 14, 2002
    Publication date: January 16, 2003
    Inventors: Jayanta Das, Ganesh Lakshminarayana, Kuo-Ming Lee, Roman Antosik, Scott Kaminski, Jithamithra Sarathy, Boris Stefanov, Ronald Simprini, Bharat Dave
  • Publication number: 20020191244
    Abstract: A method and apparatus for providing signaling for disjoint shared protection in a data network are presented. In a preferred embodiment the method utilizes one or more of the same set of finite optical signals used for maintenance purposes in the network, which can be recognized without regard to bit rate or format. Nodes that share a failed link send an alarm signal that reaches the initiator and terminator node, whereupon the initiator node sends a signal that activates a protection lightpath. When the signal sent by the initiator node arrives at the terminator node, it sends back an acknowledge signal. If the acknowledge signal is not received within a certain time protection is voided. Contention for shared protection resources is resolved via a priority scheme.
    Type: Application
    Filed: April 8, 2002
    Publication date: December 19, 2002
    Inventors: Roman Antosik, Raj Acharya, Kevin Beach, Jayanta Das, Bharat Dave, Frank Hujber, Scott Kaminski, Kuo-Ming Lee, Robin Paul, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov
  • Publication number: 20020181085
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Publication number: 20020181087
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Publication number: 20020181084
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai
  • Publication number: 20020133734
    Abstract: A novel solution to fast network restoration is provided. In a network node, dedicated hardware elements are utilized to implement restoration, and these elements are linked via a specialized high speed bus. Moreover, the incoming and outgoing optical signals to each input/output port are continually monitored and their status communicated to such dedicated hardware via the high-speed bus. This provides a complete snapshot in virtually real time of the state of each input port on the node, and the switch map specifying the inter portal connections, to the dedicated control and restoration hardware. The specialized hardware detects trouble conditions and reconfigures the switching fabric. The invention enables a very fast and efficient control loop between the I/O ports, switch fabrics, and controllers.
    Type: Application
    Filed: August 17, 2001
    Publication date: September 19, 2002
    Inventors: Jithamithra Sarathy, Raj Acharya, Roman Antosik, Jayanta Das, Bharat Dave, Chinnabbu Ekambaram, Khem Gandhi, Frank Hujber, Mohammad Laham, Frederick Renner, Ronald Simprini, Boris Stefanov, Tan B. Thai, Ravi Vora
  • Publication number: 20020079486
    Abstract: A method and system for AO3R functionality is presented. The system includes an AO2R device followed by an AOCR clock recovery module and an AOR retiming device. The AOR retiming device takes as input a recovered clock signal extracted from the output of the AO2R by the AOCR clock recovery module. The output is the recovered clock signal gated by the regenerated and reshaped input signal, and a monitor circuit is used to set the optimum operations of the retiming device. In a first embodiment the output of the AOR retiming device is fed to an AOC code and wavelength conversion output stage, which returns the signal to the NRZ coding, on a service wavelength converted to match the fixed wavelength connection with the DWDM transmission system. In a second embodiment the code conversion is incorporated into the AOR retiming device, and wavelength conversion is accomplished in the AOCR clock recovery device.
    Type: Application
    Filed: October 5, 2001
    Publication date: June 27, 2002
    Inventors: Jithamithra Sarathy, Bharat Dave, Boris Stefanov, Ronald Simprini, Tan B. Thai, Roman Antosik, Aleksandr Miglo, Olga Nedzhvetska, Kwang Kim, Doruk Engin
  • Publication number: 20020048060
    Abstract: The present invention provides an optical signal quality selection system for optimizing the quality of information transmission. The system splits an incoming optical signal into two equal signals. The split signals are evaluated in optical performance monitors, transmitting an electrical output message to a signal selector relating to the quality of the respective signal. A second electrical message is sent from the optical performance generator to an alarm indicator signal generator, which sends an optical signal to the signal selector to drop the one of the split signals and transmit the non-dropped split signal. An unequipped optical signal from an optical idle signal generator is triggered if no active optical signal is being transmitted.
    Type: Application
    Filed: April 18, 2001
    Publication date: April 25, 2002
    Inventors: Mohammad A. Laham, Raj Acharya, Roman Antosik, Jayantha Das, Bharat Dave, Chinnabbu Ekambaram, Khem Gandhi, Frank Hujber, David Lowe, Frederick Renner, Jiten Sarathy, Ronald Simprini, Boris Stefanov, Tan Thai, Ravi Vora
  • Publication number: 20020041428
    Abstract: A method and circuit are presented for an all-optical format independent preprocessor that processes an arbitrary optical input signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. The method involves subtracting a delayed copy of the signal from the original, thereby effectively doubling its frequency, and inserting a pulse at each transition of the original signal, whether rising or falling. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The asymmetry consists of a delay element in one arm. In a preferred embodiment the entire device is fabricated on a semiconductor substrate, allowing for compactness as well as minimization of interconnectivity losses and overall power consumption. The output of the preprocessor, having a significant frequency component at its original clock rate, can then be fed to a clock recovery stage for all-optical clock recovery.
    Type: Application
    Filed: May 4, 2001
    Publication date: April 11, 2002
    Inventors: Julio Martinez, Kwang Kim, Olga Nedzhvetskaya, Doruk Engin, Jiten Sarathy, Roman Antosik, Bharat Dave, Michael Evans, David Lidsky, Ronald Simprini, Boris Stefanov, Tan Thai