Patents by Inventor Roman Chepulskyy

Roman Chepulskyy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11776726
    Abstract: A magnetic device is described. The magnetic device includes a magnetic junction, a spin-orbit interaction (SO) line and a dipole-coupled layer. The magnetic junction includes a free layer. The SO line is adjacent to the free layer, carries a current in-plane and exerts a SO torque on the free layer due to the current passing through the SO line. The free layer being switchable between stable magnetic states using the SO torque. The SO line is between the free layer and the dipole-coupled layer. The dipole-coupled layer is magnetically coupled to the free layer. At least one of the free layer and the dipole-coupled layer has a damping of greater than 0.02.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: October 3, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dmytro Apalkov, Jaewoo Jeong, Ikhtiar, Roman Chepulskyy
  • Publication number: 20230276714
    Abstract: A magnetic junction includes a free layer including iron (Fe), the free layer has a first planar surface and a first side surface crossing the first planar surface; a first cap layer on the first planar surface of the free layer; and a protection layer on the first cap layer, wherein the protection layer is 8 angstroms (Å) or less in thickness. The protection layer may include one or more elements selected from the group consisting of Ta, Rh, Nb, C, Os, Ir, W, Re, Si, Ru, Ti, and Pt.
    Type: Application
    Filed: March 30, 2022
    Publication date: August 31, 2023
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Publication number: 20230180627
    Abstract: A magnetoresistive tunnel-junction (MTJ) memory element includes a magnetic reference layer (RL), a magnetic free layer (FL), a tunneling barrier layer, which extends between the magnetic RL and the magnetic FL, and a diffusion-blocking layer (DBL), which extends on the magnetic FL. The includes at least one material selected from a group consisting of bismuth (Bi), antimony (Sb), osmium (Os), rhenium (Re), tin (Sn), rhodium (Rh), indium (In), and cadmium (Cd). An oxide capping layer is also provided on the DBL. The oxide layer may include at least one of strontium (Sr), scandium (Sc), beryllium (Be), calcium (Ca), yttrium (Y), zirconium (Zr), and hafnium (Hf).
    Type: Application
    Filed: February 18, 2022
    Publication date: June 8, 2023
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Patent number: 11348627
    Abstract: A system including a racetrack memory layer is described. The racetrack memory layer includes a plurality of bit locations and a plurality of domain wall traps. The bit locations are interleaved with the domain wall traps. Each of the bit locations has a first domain wall speed. Each of the domain wall traps has a second domain wall speed. The first domain wall speed is greater than the second domain wall speed. The first domain wall speed and the second domain wall speed are due to at least one of a Dzyaloshinskii-Moriya interaction variation in the racetrack memory layer, a synthetic antiferromagnetic effect variation in the racetrack memory layer, and a separation distance for the plurality of domain wall traps corresponding to an intrinsic travel distance. The separation distance is less than one hundred nanometers.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: May 31, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dmytro Apalkov, Sungchul Lee, Roman Chepulskyy
  • Publication number: 20220068338
    Abstract: A system including a racetrack memory layer is described. The racetrack memory layer includes a plurality of bit locations and a plurality of domain wall traps. The bit locations are interleaved with the domain wall traps. Each of the bit locations has a first domain wall speed. Each of the domain wall traps has a second domain wall speed. The first domain wall speed is greater than the second domain wall speed. The first domain wall speed and the second domain wall speed are due to at least one of a Dzyaloshinskii-Moriya interaction variation in the racetrack memory layer, a synthetic antiferromagnetic effect variation in the racetrack memory layer, and a separation distance for the plurality of domain wall traps corresponding to an intrinsic travel distance. The separation distance is less than one hundred nanometers.
    Type: Application
    Filed: December 18, 2020
    Publication date: March 3, 2022
    Inventors: Dmytro Apalkov, Sungchul Lee, Roman Chepulskyy
  • Publication number: 20220068538
    Abstract: A magnetic device is described. The magnetic device includes a magnetic junction, a spin-orbit interaction (SO) line and a dipole-coupled layer. The magnetic junction includes a free layer. The SO line is adjacent to the free layer, carries a current in-plane and exerts a SO torque on the free layer due to the current passing through the SO line. The free layer being switchable between stable magnetic states using the SO torque. The SO line is between the free layer and the dipole-coupled layer. The dipole-coupled layer is magnetically coupled to the free layer. At least one of the free layer and the dipole-coupled layer has a damping of greater than 0.02.
    Type: Application
    Filed: December 18, 2020
    Publication date: March 3, 2022
    Inventors: Dmytro Apalkov, Jaewoo Jeong, Ikhtiar, Roman Chepulskyy
  • Patent number: 10205092
    Abstract: A magnetic device and method for providing the magnetic device are described. The magnetic device includes magnetic junctions and spin-orbit interaction (SO) active layer(s). The magnetic junction includes free and pinned layers separated by a nonmagnetic spacer layer. The free layer has a free layer perpendicular magnetic anisotropy (PMA) energy greater than a free layer out-of-plane demagnetization energy. The free layer also includes a diluted magnetic layer that has a PMA greater than its out-of-plane demagnetization energy. The diluted magnetic layer includes magnetic material(s) and nonmagnetic material(s) and has an exchange stiffness that is at least eighty percent of an exchange stiffness for the magnetic material(s). The SO active layer(s) are adjacent to the free layer. The SO active layer(s) carry a current in-plane and exert a SO torque on the free layer due to the current. The free layer is switchable between stable magnetic states using the SO torque.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: February 12, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Patent number: 10121961
    Abstract: A magnetic memory including a plurality of magnetic junctions and at least one spin-orbit interaction (SO) active layer is described. Each of the magnetic junctions includes a pinned layer, a free layer and a nonmagnetic spacer layer between reference and free layers. The free layer has at least one of a tilted easy axis and a high damping constant. The tilted easy axis is at a nonzero acute angle from a direction perpendicular-to-plane. The high damping constant is at least 0.02. The at least one SO active layer is adjacent to the free layer and carries a current in-plane. The at least one SO active layer exerts a SO torque on the free layer due to the current. The free layer is switchable using the SO torque.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: November 6, 2018
    Assignee: Samsung Electronics Co., LTD.
    Inventors: Dmytro Apalkov, Xueti Tang, Hong-Sik Jung, Roman Chepulskyy
  • Patent number: 10121960
    Abstract: A magnetic junction and method for providing the magnetic junction are described. The method includes providing a free layer, providing a pinned layer and providing a nonmagnetic spacer between the free and pinned layers. The free layer is switchable between stable magnetic states using a write current passed through the magnetic junction. At least one of the step of providing the free layer and the step of providing the pinned layer includes depositing a magnetic layer; depositing an adsorber layer on the magnetic layer and performing at least one anneal. The magnetic layer is amorphous as-deposited and includes an interstitial glass-promoting component. The adsorber layer attracts the interstitial glass-promoting component and has a lattice mismatch with the nonmagnetic spacer layer of not more than ten percent. Each of the anneal(s) is at a temperature greater than 300 degrees Celsius and not more than 425 degrees Celsius.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: November 6, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Publication number: 20180309049
    Abstract: A magnetic device and method for providing the magnetic device are described. The magnetic device includes magnetic junctions and spin-orbit interaction (SO) active layer(s). The magnetic junction includes free and pinned layers separated by a nonmagnetic spacer layer. The free layer has a free layer perpendicular magnetic anisotropy (PMA) energy greater than a free layer out-of-plane demagnetization energy. The free layer also includes a diluted magnetic layer that has a PMA greater than its out-of-plane demagnetization energy. The diluted magnetic layer includes magnetic material(s) and nonmagnetic material(s) and has an exchange stiffness that is at least eighty percent of an exchange stiffness for the magnetic material(s). The SO active layer(s) are adjacent to the free layer. The SO active layer(s) carry a current in-plane and exert a SO torque on the free layer due to the current. The free layer is switchable between stable magnetic states using the SO torque.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 25, 2018
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Publication number: 20180219152
    Abstract: A magnetic memory including a plurality of magnetic junctions and at least one spin-orbit interaction (SO) active layer is described. Each of the magnetic junctions includes a pinned layer, a free layer and a nonmagnetic spacer layer between reference and free layers. The free layer has at least one of a tilted easy axis and a high damping constant. The tilted easy axis is at a nonzero acute angle from a direction perpendicular-to-plane. The high damping constant is at least 0.02. The at least one SO active layer is adjacent to the free layer and carries a current in-plane. The at least one SO active layer exerts a SO torque on the free layer due to the current. The free layer is switchable using the SO torque.
    Type: Application
    Filed: April 5, 2017
    Publication date: August 2, 2018
    Inventors: Dmytro Apalkov, Xueti Tang, Hong-Sik Jung, Roman Chepulskyy
  • Patent number: 10003015
    Abstract: A magnetic junction and method for providing the magnetic junction are described. The magnetic junction resides on a substrate and is usable in a magnetic device. The magnetic junction includes free and pinned layers separated by a nonmagnetic spacer layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The free layer has a free layer perpendicular magnetic anisotropy energy greater than a free layer out-of-plane demagnetization energy. The free layer also includes a diluted magnetic layer having an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy greater than the out-of-plane demagnetization energy. The diluted magnetic layer includes at least one magnetic material and at least one nonmagnetic material. The diluted magnetic layer has an exchange stiffness that is at least eighty percent of an exchange stiffness for the magnetic material(s).
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: June 19, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Patent number: 9966901
    Abstract: A spin-torque oscillator includes: a driving reference layer having a fixed magnetization; a nonmagnetic spacer layer; and a free layer having a changeable magnetization exhibiting an easy-cone magnetic anisotropy, the nonmagnetic spacer layer being between the driving reference layer and the free layer, a magnetic anisotropy energy of the free layer having a local maximum along an axis, a local minimum at an angle from the axis, and a global maximum different from the local maximum, the angle being greater than zero degrees, wherein the spin-torque oscillator is configured such that the changeable magnetization of the free layer precesses around the axis.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: May 8, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dmytro Apalkov, Roman Chepulskyy, Vladimir Nikitin
  • Publication number: 20180108833
    Abstract: A magnetic junction and method for providing the magnetic junction are described. The method includes providing a free layer, providing a pinned layer and providing a nonmagnetic spacer between the free and pinned layers. The free layer is switchable between stable magnetic states using a write current passed through the magnetic junction. At least one of the step of providing the free layer and the step of providing the pinned layer includes depositing a magnetic layer; depositing an adsorber layer on the magnetic layer and performing at least one anneal. The magnetic layer is amorphous as-deposited and includes an interstitial glass-promoting component. The adsorber layer attracts the interstitial glass-promoting component and has a lattice mismatch with the nonmagnetic spacer layer of not more than ten percent. Each of the anneal(s) is at a temperature greater than 300 degrees Celsius and not more than 425 degrees Celsius.
    Type: Application
    Filed: December 8, 2016
    Publication date: April 19, 2018
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Publication number: 20180102476
    Abstract: A magnetic junction and method for providing the magnetic junction are described. The magnetic junction resides on a substrate and is usable in a magnetic device. The magnetic junction includes free and pinned layers separated by a nonmagnetic spacer layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The free layer has a free layer perpendicular magnetic anisotropy energy greater than a free layer out-of-plane demagnetization energy. The free layer also includes a diluted magnetic layer having an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy greater than the out-of-plane demagnetization energy. The diluted magnetic layer includes at least one magnetic material and at least one nonmagnetic material. The diluted magnetic layer has an exchange stiffness that is at least eighty percent of an exchange stiffness for the magnetic material(s).
    Type: Application
    Filed: December 1, 2016
    Publication date: April 12, 2018
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Patent number: 9825220
    Abstract: A magnetic tunnel junction device and a method to make the device are disclosed. The magnetic tunnel junction device comprises a first reference magnetic material layer, a tunnel barrier material layer, a free magnetic material layer between the first reference magnetic material layer and the tunnel barrier material layer, and a second reference magnetic material layer disposed on an opposite side of the tunnel barrier material layer from the free magnetic material layer, in which the second reference magnetic material layer is anti-magnetically exchanged coupled with the first reference magnetic material layer. A shift field Hshift experienced by the free magnetic material layer is substantially canceled by the anti-magnetic exchange coupling between the first reference magnetic material layer and the second reference magnetic material layer.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 21, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dmytro Apalkov, Xueti Tang, Dustin Erickson, Vladimir Nikitin, Roman Chepulskyy
  • Patent number: 9735350
    Abstract: A method provides a magnetic junction having a top and sides. A first magnetic layer, a nonmagnetic spacer layer and a second magnetic layer are deposited. The nonmagnetic spacer layer is between the first and second magnetic layers. A free layer is one of the magnetic layers. A reference layer is the other of the magnetic layers. The second magnetic layer includes an amorphous magnetic layer having nonmagnetic constituent(s) that are glass-forming. An anneal is performed in a gas having an affinity for the nonmagnetic constituent(s). The gas includes at least one of first and second gases. The first gas forms a gaseous compound with the nonmagnetic constituent(s) The second gas forms a solid compound with the nonmagnetic constituent(s). The second gas is usable if the anneal is performed after the magnetic junction has been defined. The solid compound is at least on the sides of the magnetic junction.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 15, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Robert Beach, Roman Chepulskyy, Dustin William Erickson, Vladimir Nikitin
  • Publication number: 20170149387
    Abstract: A spin-torque oscillator includes: a driving reference layer having a fixed magnetization; a nonmagnetic spacer layer; and a free layer having a changeable magnetization exhibiting an easy-cone magnetic anisotropy, the nonmagnetic spacer layer being between the driving reference layer and the free layer, a magnetic anisotropy energy of the free layer having a local maximum along an axis, a local minimum at an angle from the axis, and a global maximum different from the local maximum, the angle being greater than zero degrees, wherein the spin-torque oscillator is configured such that the changeable magnetization of the free layer precesses around the axis.
    Type: Application
    Filed: March 10, 2016
    Publication date: May 25, 2017
    Inventors: Dmytro Apalkov, Roman Chepulskyy, Vladimir Nikitin
  • Publication number: 20170141156
    Abstract: A magnetic tunnel junction device and a method to make the device are disclosed. The magnetic tunnel junction device comprises a first reference magnetic material layer, a tunnel barrier material layer, a free magnetic material layer between the first reference magnetic material layer and the tunnel barrier material layer, and a second reference magnetic material layer disposed on an opposite side of the tunnel barrier material layer from the free magnetic material layer, in which the second reference magnetic material layer is anti-magnetically exchanged coupled with the first reference magnetic material layer. A shift field Hshift experienced by the free magnetic material layer is substantially canceled by the anti-magnetic exchange coupling between the first reference magnetic material layer and the second reference magnetic material layer.
    Type: Application
    Filed: March 24, 2016
    Publication date: May 18, 2017
    Inventors: Dmytro APALKOV, Xueti TANG, Dustin ERICKSON, Vladimir NIKITIN, Roman CHEPULSKYY
  • Patent number: 9634241
    Abstract: A magnetic junction usable in a magnetic device and a method for providing the magnetic junction are described. The magnetic junction includes a free layer, a reference layer and nonmagnetic spacer layer between the free and reference layers. At least one of the free and reference layers includes at least one Heusler multilayer. Each of the at least one Heusler multilayer includes a plurality of Heusler adjoining layers that at least one interface. The Heusler layers include a plurality of Heusler alloys, have a plurality of lattice parameters and have a plurality of coefficients of thermal expansion. The magnetic junction is configured such that the free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: April 25, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: William H. Butler, Kamaram Munira, Roman Chepulskyy, Dmytro Apalkov