Patents by Inventor Roman Lutchyn

Roman Lutchyn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11877523
    Abstract: Embodiments of a Majorana-based qubit are disclosed herein. The qubit is based on the formation of superconducting islands, some parts of which are topological (T) and some parts of which are non-topological. Also disclosed are example techniques for fabricating such qubits. In one embodiment, a semiconductor nanowire is grown, the semiconductor nanowire having a surface with an oxide layer. A dielectric insulator layer is deposited onto a portion of the oxide layer of the semiconductor nanowire, the portion being designed to operate as a non-topological segment in the quantum device. An etching process is performed on the oxide layer of the semiconductor nanowire that removes the oxide layer at the surface of the semiconductor nanowire but maintains the oxide layer in the portion having the deposited dielectric insulator layer. A superconductive layer is deposited on the surface of the semiconductor nanowire, including over the dielectric insulator layer.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: January 16, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Michael Freedman, Andrey Antipov
  • Publication number: 20230309418
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Application
    Filed: May 5, 2023
    Publication date: September 28, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Patent number: 11707000
    Abstract: A quantum device is fabricated by forming a network of nanowires oriented in a plane of a substrate to produce a Majorana-based topological qubit. The nanowires are formed from combinations of selective-area-grown semiconductor material along with regions of a superconducting material. The selective-area-grown semiconductor material is grown by etching trenches to define the nanowires and depositing the semiconductor material in the trenches. A side gate is formed in an etched trench and situated to control a topological segment of the qubit.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: July 18, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Pikulin, Michael H. Freedman, Roman Lutchyn, Peter Krogstrup Jeppesen, Parsa Bonderson
  • Patent number: 11696516
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: July 4, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Publication number: 20210336119
    Abstract: Embodiments of a Majorana-based qubit are disclosed herein. The qubit is based on the formation of superconducting islands, some parts of which are topological (T) and some parts of which are non-topological. Also disclosed are example techniques for fabricating such qubits. In one embodiment, a semiconductor nanowire is grown, the semiconductor nanowire having a surface with an oxide layer. A dielectric insulator layer is deposited onto a portion of the oxide layer of the semiconductor nanowire, the portion being designed to operate as a non-topological segment in the quantum device. An etching process is performed on the oxide layer of the semiconductor nanowire that removes the oxide layer at the surface of the semiconductor nanowire but maintains the oxide layer in the portion having the deposited dielectric insulator layer. A superconductive layer is deposited on the surface of the semiconductor nanowire, including over the dielectric insulator layer.
    Type: Application
    Filed: July 7, 2021
    Publication date: October 28, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Michael Freedman, Andrey Antipov
  • Patent number: 11081634
    Abstract: Embodiments of a Majorana-based qubit are disclosed herein. The qubit is based on the formation of superconducting islands, some parts of which are topological (T) and some parts of which are non-topological. Also disclosed are example techniques for fabricating such qubits. In one embodiment, a semiconductor nanowire is grown, the semiconductor nanowire having a surface with an oxide layer. A dielectric insulator layer is deposited onto a portion of the oxide layer of the semiconductor nanowire, the portion being designed to operate as a non-topological segment in the quantum device. An etching process is performed on the oxide layer of the semiconductor nanowire that removes the oxide layer at the surface of the semiconductor nanowire but maintains the oxide layer in the portion having the deposited dielectric insulator layer. A superconductive layer is deposited on the surface of the semiconductor nanowire, including over the dielectric insulator layer.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: August 3, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Michael Freedman, Andrey Antipov
  • Patent number: 11056634
    Abstract: Josephson magnetic memory cells with a semiconductor-based magnetic spin valve are described. An example memory cell includes a first superconducting electrode, a second superconducting electrode, and a semiconductor-based magnetic spin valve arranged between the two superconducting electrodes. The semiconductor-based magnetic spin valve includes a semiconductor layer and a first ferromagnetic insulator arranged near the semiconductor layer, arranged on a first side of the semiconductor layer, configured to provide a fixed magnetization oriented in a first direction.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: July 6, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Andrey Antipov
  • Publication number: 20210184094
    Abstract: Josephson magnetic memory cells with a semiconductor-based magnetic spin valve are described. An example memory cell includes a first superconducting electrode, a second superconducting electrode, and a semiconductor-based magnetic spin valve arranged between the two superconducting electrodes. The semiconductor-based magnetic spin valve includes a semiconductor layer and a first ferromagnetic insulator arranged near the semiconductor layer, arranged on a first side of the semiconductor layer, configured to provide a fixed magnetization oriented in a first direction.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 17, 2021
    Inventors: Roman Lutchyn, Andrey Antipov
  • Publication number: 20210005661
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Application
    Filed: September 11, 2020
    Publication date: January 7, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Patent number: 10777605
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological obit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing, architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: September 15, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Publication number: 20200287120
    Abstract: The disclosure concerns fabricating a quantum device. In an embodiment, a method is disclosed comprising: providing a substrate and an insulator formed on the substrate; from combinations of selective-area-grown semiconductor material along with regions of a superconducting material, forming a network of nanowires oriented in a plane of the substrate which can be used to produce a Majorana-based topological qubit; and fabricating a side gate for controlling a topological segment of the qubit; wherein the selective-area-grown semiconductor material is grown on the substrate, by etching trenches in the insulator formed on the substrate to define the nanowires and depositing the semiconductor material in the trenches defining the nanowires; and wherein the fabricating of the side gate comprises etching the dielectric to create a trench for the side gate and depositing the side gate in the trench for the side gate.
    Type: Application
    Filed: June 27, 2018
    Publication date: September 10, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Pikulin, Michael H. Freedman, Roman Lutchyn, Peter Krogstrup Jeppesen, Parsa Bonderson
  • Patent number: 10692010
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: June 23, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Patent number: 10665701
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: May 26, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekėnas
  • Patent number: 10635988
    Abstract: Embodiments of the disclosed technology comprise methods and/or devices for performing measurements and/or manipulations of the collective state of a set of Majorana quasiparticles/Majorana zero modes (MZMs). Example methods/devices utilize the shift of the combined energy levels due to coupling multiple quantum systems (e.g., in a Stark-effect-like fashion). The example methods can be used for performing measurements of the collective topological charge or fermion parity of a group of MZMs (e.g., a pair of MZMs or a group of 4 MZMs). The example devices can be utilized in any system supporting MZMs.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: April 28, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Parsa Bonderson, Michael Freedman, Torsten Karzig, Chetan Nayak, Jason Alicea, Christina Knapp
  • Publication number: 20200098821
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological obit comprising 6 Majorana zero modes (MZMs) on a mesoscopic super-conducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing, architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Application
    Filed: November 11, 2019
    Publication date: March 26, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Publication number: 20200027971
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Application
    Filed: September 3, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Publication number: 20200027030
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Application
    Filed: September 3, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Patent number: 10490600
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: November 26, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Patent number: 10346348
    Abstract: Among the embodiments disclosed herein are example methods for generating all Clifford gates for a system of Majorana Tetron qubits (quasiparticle poisoning protected) given the ability to perform certain 4 Majorana zero mode measurements. Also disclosed herein are example designs for scalable quantum computing architectures that enable the methods for generating the Clifford gates, as well as other operations on the states of MZMs. These designs are configured in such a way as to allow the generation of all the Clifford gates with topological protection and non-Clifford gates (e.g. a ?/8-phase gate) without topological protection, thereby producing a computationally universal gate set. Several possible realizations of these architectures are disclosed.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: July 9, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Matthew Hastings, Torsten Karzig, Parsa Bonderson, Michael Freedman, Roman Lutchyn, Chetan Nayak
  • Publication number: 20190013457
    Abstract: Embodiments of a Majorana-based qubit are disclosed herein. The qubit is based on the formation of superconducting islands, some parts of which are topological (T) and some parts of which are non-topological. Also disclosed are example techniques for fabricating such qubits. In one embodiment, a semiconductor nanowire is grown, the semiconductor nanowire having a surface with an oxide layer. A dielectric insulator layer is deposited onto a portion of the oxide layer of the semiconductor nanowire, the portion being designed to operate as a non-topological segment in the quantum device. An etching process is performed on the oxide layer of the semiconductor nanowire that removes the oxide layer at the surface of the semiconductor nanowire but maintains the oxide layer in the portion having the deposited dielectric insulator layer. A superconductive layer is deposited on the surface of the semiconductor nanowire, including over the dielectric insulator layer.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 10, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Michael Freedman, Andrey Antipov