Patents by Inventor Roman V. Kibol

Roman V. Kibol has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8414807
    Abstract: The invention relates to a method for producing continuous chopped, coarse, staple inorganic fibers from such natural minerals and rocks as sand, quartz, reduced quartz sand stone and quartzite. The inventive method consists in melting silicon-based stone, which is used in the form of a raw material, at a temperature of 1750-1850° C., the melt being homogenated and stabilized at said temperature, in forming a decompression zone on the path of the melt flow to the discharge orifice die, in which the melt flow is shaped in the form of a strip with a thickness of 3-20 mm, and in passing said strip through the decompression zone at a speed V=(7 . . . 9)10?4 m/s. The air pressure in the decompression zone above the melt flow is maintained within a range of 0.10-0.30 Pa. The inventive device comprises a furnace for producing melt, a feeder, at the output of which a transfer chamber is mounted, a discharge orifice, a stream feeder assembly and a fiber producing mechanism.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: April 9, 2013
    Inventors: Viktor F. Kibol, Roman V. Kibol, Iryna V. Kibol
  • Patent number: 8042363
    Abstract: The invention relates to producing continuous organic fibers by stretching from molten minerals. These fibers can be used for producing heat resistant threads, rovings, cut fibers, fabrics, composite materials and products based thereon. The inventive glass has the following chemical composition in mass percentage: 15.9-18.1 Al2O3, 0.75-1.2 TiO2, 7.51-9.53 Fe2O3+FeO, 6.41-8.95 CaO, 2.5-6.4 MgO, 1.6-2.72 K2O, 3.3-4.1 Na2O, 0.23-0.5 P2O5, 0.02-0.15 SO3, 0.12-0.21 MnO, 0.05-0.19 BaO, impurities up to 1.0, the rest being SiO2. The inventive method consists in loading a ground composition in a melting furnace, in melting said composition, in homogenizing a melt, in consequently stabilizing the melt in the melting furnace feeder, in drawing and oiling the fiber and in winding it on a spool. Prior to loading, the composition is held in an alkali solution for 15-20 minutes, and is then washed with flowing water for 20-30 minutes and dried.
    Type: Grant
    Filed: December 25, 2006
    Date of Patent: October 25, 2011
    Inventors: Viktor F. Kibol, Sunao Nakanoo, Alexandr B. Biland, Roman V. Kibol
  • Patent number: 8042362
    Abstract: A plant for producing inorganic fibers from rocks includes a furnace for obtaining a melt connected to a feeder, working aperture and a warmed feeder with draw dies located below a working aperture. A transition chamber is installed on the feeder exit, the transition chamber intended for creation of a thin layer melt flow. An enclosure contains the working aperture. The transition chamber has a heater, a threshold installed at an entrance of the transition chamber and a plate rigidly fixed to an adjustable damper located over the threshold and adapted to move up and down together with the adjustable damper, with the plate surface being parallel to the bottom of the transition chamber. The plant is intended for obtaining the melt flow of a desired thickness and quality.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: October 25, 2011
    Inventors: Viktor F. Kibol, Roman V. Kibol
  • Publication number: 20100313606
    Abstract: The invention relates to a method and a plant for producing fibers from molten rocks such as basalt, diabase, amphibolite, andesite, dacite, granite and rhyolite. The inventive method involves rock crushing for producing grains of a specified size, charging the crushed rock into a melting zone and drawing fibers from the melt. The melting zone is extended along the vertical axis. The sized grains successively fall under gravity into the melting zone and the fibers are drawn from each sized grain melt. The drop rate of each sized grain into the melting zone is limited by the upward flow of a hot gas-air mixture. The plant comprises a rock crushing device and melting device with a melting zone whose outlet is connected to the discharge orifice with a bushing assembly and a device for fiber winding at the output. The plant includes a funnel at the outlet of the rock crushing device rotatable around the vertical axis.
    Type: Application
    Filed: April 29, 2008
    Publication date: December 16, 2010
    Inventors: Viktor F. Kibol, Roman V. Kibol
  • Publication number: 20100181202
    Abstract: The present invention pertains to plants for producing inorganic fibers from melted rocks, advantageously, with narrow working interval and low diathermy, for example, basalts, diabases, amphibolites, andesites, dacites, rhyolites and other rocks. The plant comprises the furnace for obtaining the melt connected to the feeder, working aperture and a warmed feeder with draw dies located below working aperture where, according to the invention, transition chamber is installed on the feeder exit, such transition chamber is intended for creation of thin layer melt flow, its enclosure contains working aperture, the transition chamber has the heater, the threshold installed at its entrance and adjustable damper located over the threshold, and these components are intended for obtaining the melt flow of needed thickness and quality. The feature of the proposed invention is also the bottom of the transition chamber which has an inclination directed towards the working aperture.
    Type: Application
    Filed: October 30, 2006
    Publication date: July 22, 2010
    Inventors: Viktor F. Kibol, Roman V. Kibol
  • Publication number: 20100173151
    Abstract: The invention relates to a method for producing continuous shopped, coarse, staple inorganic fibres from such natural minerals and rocks as sand, quartz, reduced quartz sand stone and quartzite. The inventive method consists in melting silicon-based stone, which is used in the form of a raw material, at a temperature of 1750-1850° C., the melt being homogenated and stabilised at said temperature, in forming a decompression zone on the path of the melt flow to the discharge orifice die, in which the melt flow is shaped in the form of a strip with a thickness of 3-20 mm, and in passing said strip through the decompression zone at a speed V=(7 . . . 9)10?4 m/s. The air pressure in the decompression zone above the melt flow is maintained within a range of 0.10-0.30 Pa. The inventive device comprises a furnace for producing melt, a feeder, at the output of which a transfer chamber is mounted, a discharge orifice, a stream feeder assembly and a fibre producing mechanism.
    Type: Application
    Filed: June 5, 2007
    Publication date: July 8, 2010
    Inventors: Viktor F. Kibol, Roman V. Kibol, Iryna V. Kibol
  • Publication number: 20080277818
    Abstract: The proposed inventions pertain to technology of continuous inorganic fibers manufacturing by way of drawing from melted minerals. Such continuous inorganic fibers may be used in production of heat-resistant threads, rovings, cut fibers, fabrics, composition materials and products based on such materials. The C contains the mixture of silicon (SiO2), aluminum (Al2O3), titan (TiO2), iron (Fe2O3 and FeO), calcium (CaO), magnesium (MgO), manganese (MnO) oxides and admixtures, and, according to the invention, this composition further contains potassium (K2O), sodium (Na2O), barium (BaO) oxides with the following components ratio (in mass %): Al2O3 15.90-18.10 TiO2 0.75-1.20 Fe2O3 + FeO 7.51-9.53 CaO 6.41-8.95 MgO 2.50-6.40 K2O 1.60-2.72 Na2O 3.30-4.10 P2O5 0.23-0.50 SO3 0.02-0.15 MnO 0.12-0.21 BaO 0.05-0.19 admixtures, up to 1.00 SiO2 the rest.
    Type: Application
    Filed: December 25, 2006
    Publication date: November 13, 2008
    Inventors: Viktor F. Kibol, Sunao Nakanoo, Alexandr B. Biland, Roman V. Kibol
  • Publication number: 20080179779
    Abstract: Method and apparatus for producing chopped rock fibers, such as basalt. A furnace is preferably used to melt rocks, and a drawing assembly is used to draw the melted rocks into fibers. Prior to chopping the fibers to selected lengths, a preconditioning assembly operates to induce mechanical defects in the drawn fibers. Preferably, the preconditioning assembly comprises a shock cooling stage and/or a fiber twisting stage. The shock cooling stage significantly reduces the temperature of the drawn fibers, such as by the application of a stream of fluid such as water or steam to the drawn fibers. Additionally or alternatively, the shock cooling stage preferably comprises a liquid coolant bath through which the drawn fibers pass. The fiber twisting stage preferably utilizes a twisting assembly such as a roller to induce a torsional force upon the drawn fibers to continuously twist the fibers about an axis thereof.
    Type: Application
    Filed: September 15, 2006
    Publication date: July 31, 2008
    Applicant: Rock Fiber Technology, Inc.
    Inventors: Viktor F. Kibol, Roman V. Kibol