Patents by Inventor Roman Y. Korotkov

Roman Y. Korotkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11125549
    Abstract: Methods and apparatus for measuring a thickness of a coating on an moving object are provided. Light is directed toward the object at a predetermined location on the object such that a portion of the light interacts with the object. A 1D and/or 2D maximum intensities for at least one wavelength channel is captured that is produced by the portion of the light interacting with the object. A measured average intensity of the wavelength channel and/or intensities and their arithmetic derivatives of multi wavelength channel geometries is converted into 1D (averaged) and/or 2D thickness values. Based on these values an acceptability of the coating is evaluated and thickness calculated.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: September 21, 2021
    Assignee: Arkema Inc.
    Inventors: Gunter E. Moeller, Roman Y. Korotkov, Ryan C. Smith
  • Publication number: 20210025693
    Abstract: Methods and apparatus for measuring a thickness of a coating on an moving object are provided. Light is directed toward the object at a predetermined location on the object such that a portion of the light interacts with the object. A 1D and/or 2D maximum intensities for at least one wavelength channel is captured that is produced by the portion of the light interacting with the object. A measured average intensity of the wavelength channel and/or intensities and their arithmetic derivatives of multi wavelength channel geometries is converted into 1D (averaged) and/or 2D thickness values. Based on these values an acceptability of the coating is evaluated and thickness calculated.
    Type: Application
    Filed: August 20, 2020
    Publication date: January 28, 2021
    Inventors: Gunter E. MOELLER, Roman Y. KOROTKOV, Ryan C. Smith
  • Patent number: 10788314
    Abstract: Methods and apparatus for measuring a thickness of a coating on an moving object are provided. Light is directed toward the object at a predetermined location on the object such that a portion of the light interacts with the object. A I D and/or 2D maximum intensities for at least one wavelength channel is captured that is produced by the portion of the light interacting with the object. A measured average intensity of the wavelength channel and/or intensities and their arithmetic derivatives of multi wavelength channel geometries is converted into I D (averaged) and/or 2D thickness values. Based on these values an acceptability of the coating is evaluated and thickness calculated.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: September 29, 2020
    Assignee: Arkema Inc.
    Inventors: Gunter E. Moeller, Roman Y. Korotkov, Ryan C. Smith
  • Publication number: 20190011251
    Abstract: Methods and apparatus for measuring a thickness of a coating on an moving object are provided. Light is directed toward the object at a predetermined location on the object such that a portion of the light interacts with the object. A I D and/or 2D maximum intensities for at least one wavelength channel is captured that is produced by the portion of the light interacting with the object. A measured average intensity of the wavelength channel and/or intensities and their arithmetic derivatives of multi wavelength channel geometries is converted into I D (averaged) and/or 2D thickness values. Based on these values an acceptability of the coating is evaluated and thickness calculated.
    Type: Application
    Filed: January 4, 2017
    Publication date: January 10, 2019
    Inventors: Gunter E. MOELLER, Roman Y. KOROTKOV, Ryan C. Smith
  • Patent number: 9528182
    Abstract: Complexes of metals and N,O polydentate ligands are useful as precursors in the preparation of doped zinc oxide coatings by chemical vapor deposition.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 27, 2016
    Assignee: Arkema Inc.
    Inventors: Martin E. Bluhm, Gary S. Silverman, Roman Y. Korotkov
  • Publication number: 20160043247
    Abstract: A nitrogen-containing TCO (Transparent Conductive Oxide) cap composition or layer that may be used as a capping over a TCO layer (such as doped zinc oxide) to provide enhanced thermal, chemical and scratch resistant properties. It may also be used to improve the surface smoothness of the resultant stack. The nitrogen-containing TCO cap composition or layer may be deposited onto a TCO layer, which is deposited on a transparent substrate such as glass using chemical vapor deposition methods. The nitrogen-containing TCO cap compositions or layers are comprised of at least 2 different metal elements with one of them being a Group liA element (i.e., B, Al, Ga, In, Tl, Uut.) along with oxygen and nitrogen.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 11, 2016
    Inventors: Roman Y. KOROTKOV, Jack J. REILLY
  • Publication number: 20130122192
    Abstract: Complexes of metals and N,O polydentate ligands are useful as precursors in the preparation of doped zinc oxide coatings by chemical vapor deposition.
    Type: Application
    Filed: June 9, 2010
    Publication date: May 16, 2013
    Applicant: ARKEMA INC.
    Inventors: Martin E. Bluhm, Gary S. Silverman, Roman Y. Korotkov
  • Publication number: 20120225320
    Abstract: The invention provides a method of forming a layer on a polymer substrate comprises a polymer substrate with at least one precursor, and applying ultraviolet light to decompose the at least one precursor and deposit a layer onto the polymer substrate. Also provided is a doped layer comprising zinc oxide deposited on a polymer substrate obtained by introducing at least one precursor comprising zinc and a dopant into a vessel containing a polymer substrate, and applying an ultraviolet light to decompose the at least one precursor and to deposit a layer comprising doped zinc oxide onto the polymer substrate.
    Type: Application
    Filed: October 14, 2010
    Publication date: September 6, 2012
    Applicant: Arkema Inc.
    Inventors: Chen Xu, Gary S. Silverman, Roman Y. Korotkov, Robert G. Smith
  • Publication number: 20120126273
    Abstract: A light-emitting devices and methods for forming light-emitting devices are provided. The device comprises of a substrate having a first refractive index, a transparent electrode that is coupled to an organic layer, where the transparent electrode has a second refractive index different from the first refractive index. An undercoat layer is selected that has a third refractive index to substantially match the first refractive index to the second refractive index. The undercoat layer is selected such that it has a capacity to reduce root mean square roughness of the transparent electrode film deposited. The undercoat layer is selected to improve electrical properties of the transparent electrode layer. The undercoat layer is provided between the substrate and the transparent electrode.
    Type: Application
    Filed: July 1, 2010
    Publication date: May 24, 2012
    Applicant: Arkema Inc.
    Inventors: Roman Y. Korotkov, Ryan C. Smith, Gary S. Silverman, Jeffery L. Stricker, Stephen W. Carson
  • Patent number: 8163342
    Abstract: A low-resistivity, doped zinc oxide coated glass article is formed by providing a hot glass substrate having a surface on which a coating is to be deposited, the surface being at a temperature of at least 400° C. A zinc containing compound, an oxygen-containing compound and an aluminum- or gallium-containing compound are directed to the surface on which the coating is to be deposited. The zinc containing compound, oxygen-containing compound, and aluminum- or gallium-containing compound are mixed together for a sufficient time that an aluminum or gallium doped zinc oxide coating is formed on the surface at a deposition rate of greater than 5 nm/second.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: April 24, 2012
    Assignees: Pilkington Group Limited, Arkema, Inc.
    Inventors: Jeffery L. Stricker, Ryan C. Smith, Michael B. Abrams, Roman Y. Korotkov, Gary S. Silverman, Kevin David Sanderson, Liang Ye, Guillermo Benito Gutiérrez
  • Patent number: 8097302
    Abstract: Tin oxide having high mobility and a low electron concentration, and methods for producing layers of the tin oxide layers on a substrate by atmospheric pressure chemical vapor deposition (APCVD) are disclosed. The tin oxide may undoped polycrystalline n-type tin oxide or it may be doped polycrystalline p-type tin oxide. When the layer of tin oxide is formed on a crystalline substrate, substantially crystalline tin oxide is formed. Dopant precursors for producing doped p-type tin oxide are also disclosed.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: January 17, 2012
    Assignee: Arkema Inc.
    Inventors: Roman Y. Korotkov, David A. Russo, Thomas D. Culp, Gary S. Silverman, Pierre Beaujuge
  • Patent number: 7989024
    Abstract: What is described and claimed is an atmospheric chemical vapor deposition method of making a low-resistivity, doped zinc oxide coated glass article, made by directing one or more streams of gaseous reactants, specifically a zinc containing compound, a fluorine containing compound, an oxygen containing compound, and at least one compound containing one or more of boron, aluminum, gallium and indium onto a surface of a heated glass substrate.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: August 2, 2011
    Assignees: Pilkington Group Limited, Arkema, Inc.
    Inventors: Ryan C. Smith, Michael B. Abrams, Roman Y. Korotkov, Gary S. Silverman, Jeffery L. Stricker, Kevin David Sanderson, Liang Ye, Guillermo Benito Gutiérrez
  • Patent number: 7740901
    Abstract: An atmospheric chemical vapor deposition method of making a zinc oxide coated glass article, made by directing one or more streams of gaseous reactants, specifically a zinc containing compound, and an oxygen containing compound, onto a surface of a transparent substrate material heated to a temperature of 400° C. or less.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: June 22, 2010
    Assignees: Pilkington Group Limited, Arkema, Inc.
    Inventors: Michael B. Abrams, Roman Y. Korotkov, Gary S. Silverman, Ryan C. Smith, Jeffery L. Stricker
  • Patent number: 7732013
    Abstract: The invention described and claimed herein relates to a chemical vapor deposition process for depositing a zinc oxide coating on a substrate by delivering two gaseous precursor streams to a surface of the substrate, and mixing the gaseous precursor streams at the substrate surface for a time sufficiently short so as to form a zinc oxide coating at a deposition rate greater than 5 nm/second.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: June 8, 2010
    Assignees: Pilkington Group Limited, Arkema, Inc.
    Inventors: Jeffery L. Stricker, Michael B. Abrams, Roman Y. Korotkov, Gary S. Silverman, Ryan C. Smith
  • Publication number: 20100117035
    Abstract: Tin oxide having high mobility and a low electron concentration, and methods for producing layers of the tin oxide layers on a substrate by atmospheric pressure chemical vapor deposition (APCVD) are disclosed. The tin oxide may undoped polycrystalline n-type tin oxide or it may be doped polycrystalline p-type tin oxide. When the layer of tin oxide is formed on a crystalline substrate, substantially crystalline tin oxide is formed. Dopant precursors for producing doped p-type tin oxide are also disclosed.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 13, 2010
    Applicant: Arkema Inc.
    Inventors: Roman Y. Korotkov, David A. Russo, Thomas D. Culp, Gary S. Silverman, Pierre Beaujuge
  • Patent number: 7662431
    Abstract: Tin oxide having high mobility and a low electron concentration, and methods for producing layers of the tin oxide layers on a substrate by atmospheric pressure chemical vapor deposition (APCVD) are disclosed. The tin oxide may undoped polycrystalline n-type tin oxide or it may be doped polycrystalline p-type tin oxide. When the layer of tin oxide is formed on a crystalline substrate, substantially crystalline tin oxide is formed. Dopant precursors for producing doped p-type tin oxide are also disclosed.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: February 16, 2010
    Assignee: Arkema Inc.
    Inventors: Roman Y. Korotkov, David A. Russo, Thomas D. Culp, Gary S. Silverman, Pierre Beaujuge
  • Publication number: 20090022997
    Abstract: A variety of new n-type TCO films including films with dopants having ionic sizes that approximate those of the metal oxide host material, films with stabilized rutile MO2, and films with AxMOy. The films are deposited by APCVD.
    Type: Application
    Filed: December 30, 2004
    Publication date: January 22, 2009
    Inventors: David A. Russo, Jeffery L. Stricker, Ryan C. Smith, Thomas D. Culp, Roman Y. Korotkov, Gary S. Silverman
  • Publication number: 20080107893
    Abstract: Tin oxide having high mobility and a low electron concentration, and methods for producing layers of the tin oxide layers on a substrate by atmospheric pressure chemical vapor deposition (APCVD) are disclosed. The tin oxide may undoped polycrystalline n-type tin oxide or it may be doped polycrystalline p-type tin oxide. When the layer of tin oxide is formed on a crystalline substrate, substantially crystalline tin oxide is formed. Dopant precursors for producing doped p-type tin oxide are also disclosed.
    Type: Application
    Filed: April 21, 2005
    Publication date: May 8, 2008
    Inventors: Roman Y. Korotkov, David A. Russo, Thomas D. Culp, Gary S. Silverman, Pierre Beaujuge
  • Publication number: 20080063793
    Abstract: An atmospheric chemical vapor deposition method of making a zinc oxide coated glass article, made by directing one or more streams of gaseous reactants, specifically a zinc containing compound, and an oxygen containing compound, onto a surface of a transparent substrate material heated to a temperature of 400° C. or less.
    Type: Application
    Filed: May 3, 2007
    Publication date: March 13, 2008
    Inventors: Michael B. Abrams, Roman Y. Korotkov, Gary S. Silverman, Ryan C. Smith, Jeffery L. Stricker
  • Publication number: 20080057200
    Abstract: The invention described and claimed herein relates to a chemical vapor deposition process for depositing a zinc oxide coating on a substrate by delivering two gaseous precursor streams to a surface of the substrate, and mixing the gaseous precursor streams at the substrate surface for a time sufficiently short so as to form a zinc oxide coating at a deposition rate greater than 5 nm/second.
    Type: Application
    Filed: May 3, 2007
    Publication date: March 6, 2008
    Inventors: Jeffery L. Stricker, Michael B. Abrams, Roman Y. Korotkov, Gary S. Silverman, Ryan C. Smith