Patents by Inventor Romesh R. Subramanian

Romesh R. Subramanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250242042
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: March 12, 2025
    Publication date: July 31, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins
  • Patent number: 12357703
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: February 6, 2025
    Date of Patent: July 15, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Publication number: 20250186605
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: February 27, 2025
    Publication date: June 12, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Patent number: 12325753
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: November 7, 2024
    Date of Patent: June 10, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Publication number: 20250177549
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: January 21, 2025
    Publication date: June 5, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 12319743
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: November 7, 2024
    Date of Patent: June 3, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins
  • Publication number: 20250170261
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: February 6, 2025
    Publication date: May 29, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Patent number: 12280122
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: August 9, 2024
    Date of Patent: April 22, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins
  • Patent number: 12263225
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: May 1, 2024
    Date of Patent: April 1, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Publication number: 20250099603
    Abstract: The present application relates to oligonucleotides (e.g., antisense oligonucleotides such as gapmers) designed to target FXN RNAs and targeting complexes for delivering the oligonucleotides to cells (e.g., muscle cells) and uses thereof, particularly uses relating to treatment of disease. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload increases expression or activity of a FXN allele comprising a disease-associated-repeat.
    Type: Application
    Filed: June 17, 2022
    Publication date: March 27, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Cody A. Desjardins, Oxana Beskrovnaya, Timothy Weeden, Mohammed T. Qatanani, Brendan Quinn, John Najim, Victor Kotelianski, Duncan Brown
  • Patent number: 12239716
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: August 15, 2024
    Date of Patent: March 4, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 12239717
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: August 15, 2024
    Date of Patent: March 4, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20250066495
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: November 7, 2024
    Publication date: February 27, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins
  • Publication number: 20250066496
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Application
    Filed: November 7, 2024
    Publication date: February 27, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Publication number: 20250057972
    Abstract: Aspects of the disclosure relate to complexes and other aspects relate to formulations (e.g., aqueous, lyophilized forms) comprising such complexes (e.g., wherein each complex is of the exemplary formula shown below) comprising a phosphorodiamidate morpholino oligomer (e.g., useful for targeting DMD) covalently linked to an antibody (e.g., anti-TfR1 antibody). In some embodiments, the complexes are formulated with histidine (e.g., L-histidine) and sucrose at a specified pH (e.g., about 5.0 to 7.0). Also provided are uses of these formulations for treating a subject having a mutated DMD allele associated with Duchenne Muscular Dystrophy.
    Type: Application
    Filed: September 25, 2024
    Publication date: February 20, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Timothy Weeden, Scott Hilderbrand, Sean Spring, Peiyi Shen, Cody A. Desjardins, Romesh R. Subramanian, Mohammed T. Qatanani, Brendan Quinn, John Najim
  • Publication number: 20250032634
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Application
    Filed: October 10, 2024
    Publication date: January 30, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Publication number: 20250025570
    Abstract: Aspects of the disclosure relate to oligonucleotides designed to target DUX4 RNAs and targeting complexes for delivering the oligonucleotides to cells (e.g., muscle cells) and uses thereof, particularly uses relating to treatment of disease (e.g., FSHD). Wherein a complex comprises an anti-transferrin receptor 1 (TfR1) antibody covalently linked to an oligonucleotide configured for reducing expression or activity of DUX4.
    Type: Application
    Filed: November 10, 2022
    Publication date: January 23, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Nelson Hsia, Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Brendan Quinn, Cody A. Desjardins, John Najim, Sean Spring
  • Publication number: 20250018050
    Abstract: Aspects of the disclosure relate to methods of promoting expression or activity of a dystrophin protein and/or methods of treating DMD in a subject. In some embodiments, the methods comprise administering to the subject a composition comprising complexes (e.g., muscle targeting complexes) comprising a phosphorodiamidate morpholino oligomer (e.g., useful for targeting DMD) covalently linked to an antibody (e.g., anti-TfR1 antibody).
    Type: Application
    Filed: September 15, 2022
    Publication date: January 16, 2025
    Applicant: Dyne Therapeutics, Inc.
    Inventors: Cody A. Desjardins, Kim Tang, Oxana Beskrovnaya, John Davis, Chris Mix, Timothy Weeden, Scott Hilderbrand, Sean Spring, Peiyi Shen, Romesh R. Subramanian, Mohammed T. Qatanani, John Najim, Brendan Quinn
  • Patent number: 12173079
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: May 7, 2024
    Date of Patent: December 24, 2024
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden
  • Patent number: 12173078
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of a DMPK allele comprising a disease-associated-repeat. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: May 7, 2024
    Date of Patent: December 24, 2024
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins