Patents by Inventor Romil Modi

Romil Modi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230180396
    Abstract: An electrical device, comprising a softening polymer layer, an electrode layer on a surface of the softening polymer layer and a cover polymer layer on the surface of the softening polymer layer. An opening in the polymer cover layer is filled with a reflowed solder, one end of the reflowed solder, located inside the opening, contacts a contact pad site portion of the electrode layer, and another end of the reflowed solder contacts an electrical connector electrode of the device.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 8, 2023
    Inventors: Romil Modi, Jonathan Reeder, Gregory T. Ellson, Walter E. Voit, Alexandra Joshi Imre
  • Patent number: 11638816
    Abstract: A nerve cuff electrode device comprising a cuff body having a smart memory polymer layer with a rigid configuration at room temperature and a softened configuration at about 37° C. The smart memory polymer layer has a trained curved region with a radius of curvature of about 3000 microns or less. A plurality of thin film electrodes located on the smart memory polymer layer. The thin film electrodes include discrete titanium nitride electrode sites that are located in the trained curved region. An exposed surface of each of the discrete titanium nitride electrode sites has a charge injection capacity of about 0.1 mC/cm2 or greater. Methods or manufacturing and using the device are also disclosed.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: May 2, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Romil Modi, Walter E. Voit, Mario Romero-Ortega
  • Patent number: 11596072
    Abstract: Flexible electrical devices comprising electrode layers on softening polymers and methods of manufacturing such devices, including lift-off processes for forming electrodes on softening polymers, processes for forming devices with a patterned double softening polymer layer, and solder reflow processes for forming electrical contacts on softening polymers.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: February 28, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Romil Modi, Jonathan Reeder, Gregory T. Ellson, Walter E. Voit, Alexandra Joshi Imre
  • Publication number: 20210236810
    Abstract: A nerve cuff electrode device comprising a cuff body having a smart memory polymer layer with a rigid configuration at room temperature and a softened configuration at about 37° C. The smart memory polymer layer has a trained curved region with a radius of curvature of about 3000 microns or less. A plurality of thin film electrodes located on the smart memory polymer layer. The thin film electrodes include discrete titanium nitride electrode sites that are located in the trained curved region. An exposed surface of each of the discrete titanium nitride electrode sites has a charge injection capacity of about 0.1 mC/cm2 or greater. Methods or manufacturing and using the device are also disclosed.
    Type: Application
    Filed: April 14, 2021
    Publication date: August 5, 2021
    Inventors: Romil Modi, Walter E. Voit, Mario Romero-Ortega
  • Patent number: 11045646
    Abstract: A nerve cuff electrode device comprising a cuff body having a smart memory polymer layer with a rigid configuration at room temperature and a softened configuration at about 37 C. The smart memory polymer layer has a trained curved region with a radius of curvature of about 3000 microns or less. A plurality of thin film electrodes located on the smart memory polymer layer. The thin film electrodes include discrete titanium nitride electrode sites that are located in the trained curved region. An exposed surface of each of the discrete titanium nitride electrode sites has a charge injection capacity of about 0.1 mC/cm2 or greater. Methods or manufacturing and using the device are also disclosed.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: June 29, 2021
    Assignee: Board of Regents, The University of Texas System
    Inventors: Romil Modi, Walter E. Voit, Mario Romero-Ortega
  • Publication number: 20200093007
    Abstract: Flexible electrical devices comprising electrode layers on softening polymers and methods of manufacturing such devices, including lift-off processes for forming electrodes on softening polymers, processes for forming devices with a patterned double softening polymer layer, and solder reflow processes for forming electrical contacts on softening polymers.
    Type: Application
    Filed: October 2, 2019
    Publication date: March 19, 2020
    Inventors: Romil Modi, Jonathan Reeder, Gregory T. Ellson, Walter E. Voit, Alexandra Joshi Imre
  • Patent number: 10485109
    Abstract: Flexible electrical devices comprising electrode layers on softening polymers and methods of manufacturing such devices, including lift-off processes for forming electrodes on softening polymers, processes for forming devices with a patterned double softening polymer layer, and solder reflow processes for forming electrical contacts on softening polymers.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: November 19, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Romil Modi, Jonathan Reeder, Gregory T. Ellson, Walter Voit, Alexandra Joshi Imre
  • Publication number: 20190217082
    Abstract: A nerve cuff electrode device comprising a cuff body having a smart memory polymer layer with a rigid configuration at room temperature and a softened configuration at about 37 C. The smart memory polymer layer has a trained curved region with a radius of curvature of about 3000 microns or less. A plurality of thin film electrodes located on the smart memory polymer layer. The thin film electrodes include discrete titanium nitride electrode sites that are located in the trained curved region. An exposed surface of each of the discrete titanium nitride electrode sites has a charge injection capacity of about 0.1 mC/cm2 or greater. Methods or manufacturing and using the device are also disclosed.
    Type: Application
    Filed: June 26, 2017
    Publication date: July 18, 2019
    Inventors: Romil Modi, Walter E. Voit, Mario Romero-Ortega
  • Publication number: 20180124926
    Abstract: Flexible electrical devices comprising electrode layers on softening polymers and methods of manufacturing such devices, including lift-off processes for forming electrodes on softening polymers, processes for forming devices with a patterned double softening polymer layer, and solder reflow processes for forming electrical contacts on softening polymers.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 3, 2018
    Inventors: Romil Modi, Jonathan Reeder, Gregory T. Ellson, Walter Voit, Alexandra Joshi Imre