Patents by Inventor Romualdas Vaisvila

Romualdas Vaisvila has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939628
    Abstract: Methods and compositions are provided for identifying any of the presence, location and phasing of methylated and/or hydroxymethylated cytosines in nucleic acids including long stretches of DNA. In some embodiments, the method may comprise reacting a first portion (aliquot) of a nucleic acid sample with a dioxygenase and optionally a glucosyltransferase in a reaction mixture containing the nucleic acid followed by a reaction with a cytidine deaminase to detect and optionally map 5mC in a DNA. Optionally, a second portion can be reacted with glucosyltransferase followed by reaction with a cytidine deaminase to detect and optionally map 5hmC in a DNA.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: March 26, 2024
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Theodore B. Davis, Shengxi Guan, Zhiyi Sun, Laurence Ettwiller, Lana Saleh
  • Publication number: 20230357838
    Abstract: Provided herein, among other things, is a method for deaminating a double-stranded nucleic acid. In some embodiments, the method may comprise contacting a double-stranded DNA substrate that comprises cytosines and a double-stranded DNA deaminase having an amino acid sequence that is at least 80% identical to any of SEQ ID NOS: 21, 40, 47, 49, 50, 55, 58, 59, 62, 63, 65, 67, 70, 71, 76, 106, 107, 110, 112, 114, 117, 163 and/or 164 to produce a deamination product that comprises deaminated cytosines. Enzymes and kits for performing the method are also provided.
    Type: Application
    Filed: May 24, 2023
    Publication date: November 9, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Zhiyi Sun, Sean R. Johnson, Bo Yan, Lixin Chen, G. Brett Robb, Thomas C. Evans, JR., Romualdas Vaisvila
  • Publication number: 20230257730
    Abstract: Provided herein, among other things, is a method for deaminating a double-stranded nucleic acid. In some embodiments, the method may comprise contacting a double-stranded DNA substrate that comprises cytosines and a double-stranded DNA deaminase having an amino acid sequence that is at least 80% identical to any of SEQ ID NOS: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 19, 24, 26, 27, 28, 33, 40, 49, 50, 63, 95, 96, 97, and/or 99 to produce a deamination product that comprises deaminated cytosines. Enzymes and kits for performing the method are also provided.
    Type: Application
    Filed: November 22, 2022
    Publication date: August 17, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Sean R. Johnson, Zhiyi Sun, Thomas C. Evans, JR.
  • Publication number: 20210388433
    Abstract: A method for identifying any of the presence, location and phasing of modified cytosines (C) in long stretches of nucleic acids is provided. In some embodiments, the method may comprise (a) reacting a first portion of a nucleic acid sample containing at least one C and/or at least one modified C with a DNA glucosyltransferase and a cytidine deaminase to produce a first product and/or reacting a second portion of the sample with a dioxygenase, optionally a DNA glucosyltransferase and a cytidine deaminase to produce a second product and; (b) comparing the sequences from the first and optionally the second product obtained in (a), or amplification products thereof, with each other and/or an untreated reference sequence to determine which Cs in the initial nucleic acid fragment are modified. A modified TET methylcytosine dioxygenase with improved efficiency compared to unmodified TET2 at converting methylcytosine to carboxymethylcytosine is also provided.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 16, 2021
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Zhiyi Sun, Shengxi Guan, Lana Saleh, Laurence Ettwiller, Theodore B. Davis
  • Patent number: 11124825
    Abstract: A method for identifying any of the presence, location and phasing of modified cytosines (C) in long stretches of nucleic acids is provided. In some embodiments, the method may comprise (a) reacting a first portion of a nucleic acid sample containing at least one C and/or at least one modified C with a DNA glucosyltransferase and a cytidine deaminase to produce a first product and/or reacting a second portion of the sample with a dioxygenase, optionally a DNA glucosyltransferase and a cytidine deaminase to produce a second product and; (b) comparing the sequences from the first and optionally the second product obtained in (a), or amplification products thereof, with each other and/or an untreated reference sequence to determine which Cs in the initial nucleic acid fragment are modified. A modified TET methylcytosine dioxygenase with improved efficiency compared to unmodified TET2 at converting methylcytosine to carboxymethylcytosine is also provided.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 21, 2021
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Zhiyi Sun, Shengxi Guan, Lana Saleh, Laurence Ettwiller, Theodore B. Davis
  • Publication number: 20210207200
    Abstract: Methods and compositions are provided for identifying any of the presence, location and phasing of methylated and/or hydroxymethylated cytosines in nucleic acids including long stretches of DNA. In some embodiments, the method may comprise reacting a first portion (aliquot) of a nucleic acid sample with a dioxygenase and optionally a glucosyltransferase in a reaction mixture containing the nucleic acid followed by a reaction with a cytidine deaminase to detect and optionally map 5mC in a DNA. Optionally, a second portion can be reacted with glucosyltransferase followed by reaction with a cytidine deaminase to detect and optionally map 5hmC in a DNA.
    Type: Application
    Filed: February 22, 2021
    Publication date: July 8, 2021
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Theodore B. Davis, Shengxi Guan, Zhiyi Sun, Laurence Ettwiller, Lana Saleh
  • Patent number: 11001876
    Abstract: Methods and compositions are provided for identifying any of the presence, location and phasing of methylated and/or hydroxymethylated cytosines in nucleic acids including long stretches of DNA. In some embodiments, the method may comprise reacting a first portion (aliquot) of a nucleic acid sample with a dioxygenase and optionally a glucosyltransferase in a reaction mixture containing the nucleic acid followed by a reaction with a cytidine deaminase to detect and optionally map 5mC in a DNA. Optionally, a second portion can be reacted with glucosyltransferase followed by reaction with a cytidine deaminase to detect and optionally map 5hmC in a DNA.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: May 11, 2021
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Theodore B. Davis, Shengxi Guan, Zhiyi Sun, Laurence Ettwiller, Lana Saleh
  • Patent number: 10619200
    Abstract: A method for identifying the location and phasing of modified cytosines (C) in long stretches of nucleic acids is provided. In some embodiments, the method may comprise (a) reacting a first portion of a nucleic acid sample containing at least one C and/or at least one modified C with a DNA glucosyltransferase and a cytidine deaminase to produce a first product and optionally reacting a second portion of the sample with a dioxygenase and a cytidine deaminase to produce a second product and; (b) comparing the sequences from the first and optionally the second product obtained in (a), or amplification products thereof, with each other and/or an untreated reference sequence to determine which Cs in the initial nucleic acid fragment are modified. A modified TET methylcytosine dioxygenase that is more efficient at converting methylcytosine to carboxymethylcytosine is also provided.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: April 14, 2020
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Zhiyi Sun, Shengxi Guan, Lana Saleh, Laurence Ettwiller, Theodore B. Davis
  • Publication number: 20190185919
    Abstract: Methods and compositions are provided for identifying any of the presence, location and phasing of methylated and/or hydroxymethylated cytosines in nucleic acids including long stretches of DNA. In some embodiments, the method may comprise reacting a first portion (aliquot) of a nucleic acid sample with a dioxygenase and optionally a glucosyltransferase in a reaction mixture containing the nucleic acid followed by a reaction with a cytidine deaminase to detect and optionally map 5mC in a DNA.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 20, 2019
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Theodore B. Davis, Shengxi Guan, Zhiyi Sun, Laurence Ettwiller, Lana Saleh
  • Patent number: 10260088
    Abstract: Methods and compositions are provided for identifying any of the presence, location and phasing of methylated and/or hydroxymethylated cytosines in nucleic acids including long stretches of DNA. In some embodiments, the method may comprise reacting a first portion (aliquot) of a nucleic acid sample with a dioxygenase and optionally a glucosyltransferase in a reaction mixture containing the nucleic acid followed by a reaction with a cytidine deaminase to detect and optionally map 5mC in a DNA. Optionally, a second portion can be reacted with glucosyltransferase followed by reaction with a cytidine deaminase to detect and optionally map 5hmC in a DNA.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: April 16, 2019
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Theodore B. Davis, Shengxi Guan, Zhiyi Sun, Laurence Ettwiller, Lana Saleh
  • Publication number: 20190100796
    Abstract: A method for identifying any of the presence, location and phasing of modified cytosines (C) in long stretches of nucleic acids is provided. In some embodiments, the method may comprise (a) reacting a first portion of a nucleic acid sample containing at least one C and/or at least one modified C with a DNA glucosyltransferase and a cytidine deaminase to produce a first product and/or reacting a second portion of the sample with a dioxygenase, optionally a DNA glucosyltransferase and a cytidine deaminase to produce a second product and; (b) comparing the sequences from the first and optionally the second product obtained in (a), or amplification products thereof, with each other and/or an untreated reference sequence to determine which Cs in the initial nucleic acid fragment are modified. A modified TET methylcytosine dioxygenase with improved efficiency compared to unmodified TET2 at converting methylcytosine to carboxymethylcytosine is also provided.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 4, 2019
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Zhiyi Sun, Shengxi Guan, Lana Saleh, Laurence Ettwiller, Theodore B. Davis
  • Patent number: 10227646
    Abstract: A method for identifying any of the presence, location and phasing of modified cytosines (C) in long stretches of nucleic acids is provided. In some embodiments, the method may comprise (a) reacting a first portion of a nucleic acid sample containing at least one C and/or at least one modified C with a DNA glucosyltransferase and a cytidine deaminase to produce a first product and/or reacting a second portion of the sample with a dioxygenase, optionally a DNA glucosyltransferase and a cytidine deaminase to produce a second product and; (b) comparing the sequences from the first and optionally the second product obtained in (a), or amplification products thereof, with each other and/or an untreated reference sequence to determine which Cs in the initial nucleic acid fragment are modified. A modified TET methylcytosine dioxygenase with improved efficiency compared to unmodified TET2 at converting methylcytosine to carboxymethylcytosine is also provided.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: March 12, 2019
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Zhiyi Sun, Shengxi Guan, Lana Saleh, Laurence Ettwiller, Theodore B. Davis
  • Publication number: 20180362960
    Abstract: Among other things, a method for performing multiple enzyme reactions in a single tube is provided. In some embodiments, the method may comprise producing a reaction mix comprising a thermolabile UDG, an AP lyase and DNA fragments that comprise one or more uracil residues, incubating the reaction mix at a relatively low temperature to cleave fragments at the one or more uracil residues, raising the temperature of the reaction mix to a relatively high temperature to inactivate the thermolabile UDG; and deaminating the fragments, thereby converting any cytosine in the fragments of DNA to uracil.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Lauren Higgins, Ashley Luck
  • Patent number: 10155939
    Abstract: Among other things, a method for performing multiple enzyme reactions in a single tube is provided. In some embodiments, the method may comprise producing a reaction mix comprising a thermolabile UDG, an AP lyase and DNA fragments that comprise one or more uracil residues, incubating the reaction mix at a relatively low temperature to cleave fragments at the one or more uracil residues, raising the temperature of the reaction mix to a relatively high temperature to inactivate the thermolabile UDG; and deaminating the fragments, thereby converting any cytosine in the fragments of DNA to uracil.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: December 18, 2018
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Lauren Higgins, Ashley Luck
  • Publication number: 20180312914
    Abstract: A method for identifying the location and phasing of modified cytosines (C) in long stretches of nucleic acids is provided. In some embodiments, the method may comprise (a) reacting a first portion of a nucleic acid sample containing at least one C and/or at least one modified C with a DNA glucosyltransferase and a cytidine deaminase to produce a first product and optionally reacting a second portion of the sample with a dioxygenase and a cytidine deaminase to produce a second product and; (b) comparing the sequences from the first and optionally the second product obtained in (a), or amplification products thereof, with each other and/or an untreated reference sequence to determine which Cs in the initial nucleic acid fragment are modified. A modified TET methylcytosine dioxygenase that is more efficient at converting methylcytosine to carboxymethylcytosine is also provided.
    Type: Application
    Filed: October 28, 2016
    Publication date: November 1, 2018
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Zhiyi Sun, Shengxi Guan, Lana Saleh, Laurence Ettwiller, Theodore B. Davis
  • Publication number: 20180171397
    Abstract: Methods and compositions are provided for identifying any of the presence, location and phasing of methylated and/or hydroxymethylated cytosines in nucleic acids including long stretches of DNA. In some embodiments, the method may comprise reacting a first portion (aliquot) of a nucleic acid sample with a dioxygenase and optionally a glucosyltransferase in a reaction mixture containing the nucleic acid followed by a reaction with a cytidine deaminase to detect and optionally map 5mC in a DNA. Optionally, a second portion can be reacted with glucosyltransferase followed by reaction with a cytidine deaminase to detect and optionally map 5hmC in a DNA.
    Type: Application
    Filed: February 9, 2018
    Publication date: June 21, 2018
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Theodore B. Davis, Shengxi Guan, Zhiyi Sun, Laurence Ettwiller, Lana Saleh
  • Patent number: 9896726
    Abstract: Compositions and methods are provided for discrimination between cytosine and modifications thereof using cytidine deaminases and/or oxygenases. Variants of wild type cytidine deaminases are described which show reduced bias with respect to adjacent nucleotides upstream of the cytosine. The methods provide a rapid and convenient use of enzymes to obtain methylomes.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: February 20, 2018
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Heidi E. Johnson, Saulius Vainauskas, Theodore B. Davis
  • Publication number: 20170198344
    Abstract: A method for identifying any of the presence, location and phasing of modified cytosines (C) in long stretches of nucleic acids is provided. In some embodiments, the method may comprise (a) reacting a first portion of a nucleic acid sample containing at least one C and/or at least one modified C with a DNA glucosyltransferase and a cytidine deaminase to produce a first product and/or reacting a second portion of the sample with a dioxygenase, optionally a DNA glucosyltransferase and a cytidine deaminase to produce a second product and; (b) comparing the sequences from the first and optionally the second product obtained in (a), or amplification products thereof, with each other and/or an untreated reference sequence to determine which Cs in the initial nucleic acid fragment are modified. A modified TET methylcytosine dioxygenase with improved efficiency compared to unmodified TET2 at converting methylcytosine to carboxymethylcytosine is also provided.
    Type: Application
    Filed: February 24, 2017
    Publication date: July 13, 2017
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Zhiyi Sun, Shengxi Guan, Lana Saleh, Laurence Ettwiller, Theodore B. Davis
  • Patent number: 9464277
    Abstract: 5-methylpyrimidine oxygenases and their use in the modification of nucleic acids are described.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: October 11, 2016
    Assignee: New England Biolabs, Inc.
    Inventors: Yu Zheng, Lana Saleh, June Pais, Nan Dai, Richard J. Roberts, Ivan R. Correa, Jr., Megumu Mabuchi, Romualdas Vaisvila
  • Publication number: 20150322506
    Abstract: Compositions and methods are provided for discrimination between cytosine and modifications thereof using cytidine deaminases and/or oxygenases. Variants of wild type cytidine deaminases are described which show reduced bias with respect to adjacent nucleotides upstream of the cytosine. The methods provide a rapid and convenient use of enzymes to obtain methylomes.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 12, 2015
    Applicant: NEW ENGLAND BIOLABS, INC.
    Inventors: Romualdas Vaisvila, Heidi E. Johnson, Saulius Vainauskas, Theodore B. Davis