Patents by Inventor Ron B. Shmueli

Ron B. Shmueli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230414782
    Abstract: The presently disclosed subject matter provides compositions and methods for using a non-spherical biomimetic artificial cell comprising a three-dimensional microparticle or nanoparticle having an asymmetrical shape and a supported lipid bilayer (SLB). The non-spherical biomimetic artificial cells can be used in cell biomimicry and for active targeting mediated drug delivery.
    Type: Application
    Filed: May 10, 2023
    Publication date: December 28, 2023
    Inventors: Randall A. Meyer, Mohit P. Matthew, Joel C. Sunshine, Ron B. Shmueli, Jordan J. Green, Kevin Yarema
  • Publication number: 20210252154
    Abstract: Degradable polymers were synthesized that self-assemble with DNA to form particles that are effective for gene delivery. Small changes to polymer synthesis conditions, particle formulation conditions, and polymer structure provides significant changes to efficacy in a cell-type dependent manner. Polymers presented here are more effective than commercially available materials, such as LIPOFECTAMINE 2000™, FUGENE®, or polyethylenimine (PEI), for gene delivery to cancerous fibroblasts or human primary fibroblasts. The presently disclosed materials may be useful for cancer therapeutics and regenerative medicine.
    Type: Application
    Filed: January 15, 2021
    Publication date: August 19, 2021
    Inventors: Jordan J. Green, Joel C. Sunshine, Nupura S. Bhise, Ron B. Shmueli, Stephany Y. Tzeng
  • Publication number: 20210220287
    Abstract: Polymeric nanoparticles, microparticles, and gels for delivering cargo, e.g., a therapeutic agent, such as a peptide, to a target, e.g., a cell, and their use for treating diseases, including angiogenesis-dependent diseases, such as age-related macular degeneration and cancer, are disclosed. Methods for formulating, stabilizing, and administering single peptides or combinations of peptides via polymeric particle and gel delivery systems also are disclosed.
    Type: Application
    Filed: January 14, 2021
    Publication date: July 22, 2021
    Inventors: Jordan Jamieson Green, Aleksander S. Popel, Joel Chaim Sunshine, Ron B. Shmueli, Stephany Yi Tzeng, Kristen Lynn Kozielski
  • Publication number: 20200361993
    Abstract: Mimetic peptides having anti-angiogenic and anti-tumorigenic properties and methods of their use for treating cancer, ocular diseases, such as age-related macular degeneration, and other-angiogenesis-dependent diseases are disclosed, More particularly, an isolated peptide comprising the amino acid sequence LRRFSTAPFAFIDINDVINF, which exhibits anti-angiogenic activity in endothelial cell proliferation, migration, adhesion, and tube formation assays, anti-migratory activity in human breast cancer cells in vitro, anti-angiogenic and anti-tumorigenic activity in vivo in breast cancer xenograft models, and age-related macular degeneration models is disclosed. The isolate peptide also exhibits anti-lymphangiogenic and directly anti-tumorigenic properties.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 19, 2020
    Inventors: ALEKSANDER S. POPEL, NIRANJAN B. PANDEY, ESAK LEE, JORDAN J. GREEN, RON B. SHMUELI
  • Patent number: 10786463
    Abstract: Polymeric nanoparticles, microparticles, and gels for delivering cargo, e.g., a therapeutic agent, such as a peptide, to a target, e.g., a cell, and their use for treating diseases, including angiogenesis-dependent diseases, such as age-related macular degeneration and cancer, are disclosed. Methods for formulating, stabilizing, and administering single peptides or combinations of peptides via polymeric particle and gel delivery systems also are disclosed.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: September 29, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jordan Jamieson Green, Aleksander S. Popel, Joel Chaim Sunshine, Ron B. Shmueli, Stephany Yi Tzeng, Kristen Lynn Kozielski
  • Publication number: 20200297851
    Abstract: Degradable polymers were synthesized that self-assemble with DNA to form particles that are effective for gene delivery. Small changes to polymer synthesis conditions, particle formulation conditions, and polymer structure provides significant changes to efficacy in a cell-type dependent manner. Polymers presented here are more effective than commercially available materials, such as LIPOFECTAMINE 2000™, FUGENE®, or polyethylenimine (PEI), for gene delivery to cancerous fibroblasts or human primary fibroblasts. The presently disclosed materials may be useful for cancer therapeutics and regenerative medicine.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: Jordan J. Green, Joel C. Sunshine, Nupura S. Bhise, Ron B. Shmueli, Stephany Y. Tzeng
  • Patent number: 10774112
    Abstract: Mimetic peptides having anti-angiogenic and anti-tumorigenic properties and methods of their use for treating cancer, ocular diseases, such as age-related macular degeneration, and other-angiogenesis-dependent diseases are disclosed. More particularly, an isolated peptide comprising the amino acid sequence LRRFSTAPFAFIDINDVINF, which exhibits anti-angiogenic activity in endothelial cell proliferation, migration, adhesion, and tube formation assays, anti-migratory activity in human breast cancer cells in vitro, anti-angiogenic and anti-tumorigenic activity in vivo in breast cancer xenograft models, and age-related macular degeneration models is disclosed. The isolate peptide also exhibits anti-lymphangiogenic and directly anti-tumorigenic properties.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: September 15, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Aleksander S. Popel, Niranjan B. Pandey, Esak Lee, Jordan J. Green, Ron B. Shmueli
  • Publication number: 20180339024
    Abstract: The present invention in various aspects and embodiments involves pharmaceutical compositions of peptides derived from the ?5 fibril of type IV collagen, and uses thereof for medical treatment. The peptides target ?5?1 and ?V?3 integrins, and inhibit signaling through multiple receptors, and find use for inhibiting vascular permeability, angiogenesis, lymphangiogenesis.
    Type: Application
    Filed: November 18, 2016
    Publication date: November 29, 2018
    Inventors: Eric M. BRESSLER, Jordan J. GREEN, Niranjan B. PANDEY, Aleksander S. POPEL, Ron B. SHMUELI, Sr.
  • Publication number: 20180256745
    Abstract: The presently disclosed subject matter provides compositions and methods for using a non-spherical biomimetic artificial cell comprising a three-dimensional microparticle or nanoparticle having an asymmetrical shape and a supported lipid bilayer (SLB). The non-spherical biomimetic artificial cells can be used in cell biomimicry and for active targeting mediated drug delivery.
    Type: Application
    Filed: March 28, 2016
    Publication date: September 13, 2018
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: RANDALL A. MEYER, MOHIT MATTHEW, JOEL C. SUNSHINE, RON B. SHMUELI, JORDAN J. GREEN, KEVIN YAREMA
  • Publication number: 20180177881
    Abstract: Degradable polymers were synthesized that self-assemble with DNA to form particles that are effective for gene delivery. Small changes to polymer synthesis conditions, particle formulation conditions, and polymer structure provides significant changes to efficacy in a cell-type dependent manner. Polymers presented here are more effective than commercially available materials, such as LIPOFECTAMINE 2000™, FUGENE®, or polyethylenimine (PEI), for gene delivery to cancerous fibroblasts or human primary fibroblasts. The presently disclosed materials may be useful for cancer therapeutics and regenerative medicine.
    Type: Application
    Filed: November 22, 2017
    Publication date: June 28, 2018
    Inventors: Jordan J. Green, Joel C. Sunshine, Nupura S. Bhise, Ron B. Shmueli, Stephany Y. Tzeng
  • Publication number: 20180134753
    Abstract: Mimetic peptides having anti-angiogenic and anti-tumorigenic properties and methods of their use for treating cancer, ocular diseases, such as age-related macular degeneration, and other-angiogenesis-dependent diseases are disclosed. More particularly, an isolated peptide comprising the amino acid sequence LRRFSTAPFAFIDINDVINF, which exhibits anti-angiogenic activity in endothelial cell proliferation, migration, adhesion, and tube formation assays, anti-migratory activity in human breast cancer cells in vitro, anti-angiogenic and anti-tumorigenic activity in vivo in breast cancer xenograft models, and age-related macular degeneration models is disclosed. The isolate peptide also exhibits anti-lymphangiogenic and directly anti-tumorigenic properties.
    Type: Application
    Filed: September 22, 2017
    Publication date: May 17, 2018
    Inventors: ALEKSANDER S. POPEL, NIRANJAN B. PANDEY, ESAK LEE, JORDAN J. GREEN, RON B. SHMUELI
  • Patent number: 9884118
    Abstract: Degradable polymers were synthesized that self-assemble with DNA to form particles that are effective for gene delivery. Small changes to polymer synthesis conditions, particle formulation conditions, and polymer structure provides significant changes to efficacy in a cell-type dependent manner. Polymers presented here are more effective than commercially available materials, such as LIPOFECTAMINE 2000™, FUGENE®, or polyethylenimine (PEI), for gene delivery to cancerous fibroblasts or human primary fibroblasts. The presently disclosed materials may be useful for cancer therapeutics and regenerative medicine.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: February 6, 2018
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jordan J. Green, Joel C. Sunshine, Nupura S. Bhise, Ron B. Shmueli, Stephany Y. Tzeng
  • Publication number: 20180028455
    Abstract: Polymeric nanoparticles, microparticles, and gels for delivering cargo, e.g., a therapeutic agent, such as a peptide, to a target, e.g., a cell, and their use for treating diseases, including angiogenesis-dependent diseases, such as age-related macular degeneration and cancer, are disclosed. Methods for formulating, stabilizing, and administering single peptides or combinations of peptides via polymeric particle and gel delivery systems also are disclosed.
    Type: Application
    Filed: July 10, 2017
    Publication date: February 1, 2018
    Inventors: Jordan Jamieson Green, Aleksander S. Popel, Joel Chaim Sunshine, Ron B. Shmueli, Stephany Yi Tzeng, Kristen Lynn Kozielski
  • Patent number: 9802984
    Abstract: Mimetic peptides having anti-angiogenic and anti-tumorigenic properties and methods of their use for treating cancer, ocular diseases, such as age-related macular degeneration, and other-angiogenesis-dependent diseases are disclosed. More particularly, an isolated peptide comprising the amino acid sequence LRRFSTAPFAFIDINDVINF, which exhibits anti-angiogenic activity in endothelial cell proliferation, migration, adhesion, and tube formation assays, anti-migratory activity in human breast cancer cells in vitro, anti-angiogenic and anti-tumorigenic activity in vivo in breast cancer xenograft models, and age-related macular degeneration models is disclosed. The isolate peptide also exhibits anti-lymphangiogenic and directly anti-tumorigenic properties.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: October 31, 2017
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Aleksander S. Popel, Niranjan B. Pandey, Esak Lee, Jordan J. Green, Ron B. Shmueli
  • Patent number: 9717694
    Abstract: Polymeric nanoparticles, microparticles, and gels for delivering cargo, e.g., a therapeutic agent, such as a peptide, to a target, e.g., a cell, and their use for treating diseases, including angiogenesis-dependent diseases, such as age-related macular degeneration and cancer, are disclosed. Methods for formulating, stabilizing, and administering single peptides or combinations of peptides via polymeric particle and gel delivery systems also are disclosed.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 1, 2017
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jordan Jamieson Green, Aleksander S. Popel, Joel Chaim Sunshine, Ron B. Shmueli, Stephany Yi Tzeng, Kristen Lynn Kozielski
  • Publication number: 20160374949
    Abstract: Polymeric nanoparticles, microparticles, and gels for delivering cargo, e.g., a therapeutic agent, such as a peptide, to a target, e.g., a cell, and their use for treating diseases, including angiogenesis-dependent diseases, such as age-related macular degeneration and cancer, are disclosed. Methods for formulating, stabilizing, and administering single peptides or combinations of peptides via polymeric particle and gel delivery systems also are disclosed.
    Type: Application
    Filed: October 12, 2011
    Publication date: December 29, 2016
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jordan Jamieson Green, Aleksander S. Popel, Joel Chaim Sunshine, Ron B. Shmueli, Stephany Yi Tzeng, Kristen Lynn Kozielski
  • Publication number: 20160122390
    Abstract: Mimetic peptides having anti-angiogenic and anti-tumorigenic properties and methods of their use for treating cancer, ocular diseases, such as age-related macular degeneration, and other-angiogenesis-dependent diseases are disclosed. More particularly, an isolated peptide comprising the amino acid sequence LRRFSTAPFAFIDINDVINF, which exhibits anti-angiogenic activity in endothelial cell proliferation, migration, adhesion, and tube formation assays, anti-migratory activity in human breast cancer cells in vitro, anti-angiogenic and anti-tumorigenic activity in vivo in breast cancer xenograft models, and age-related macular degeneration models is disclosed. The isolate peptide also exhibits anti-lymphangiogenic and directly anti-tumorigenic properties.
    Type: Application
    Filed: June 9, 2014
    Publication date: May 5, 2016
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: ALEKSANDER S. POPEL, NIRANJAN B. PANDEY, ESAK LEE, JORDAN J. GREEN, RON B. SHMUELI
  • Publication number: 20150250881
    Abstract: Degradable polymers were synthesized that self-assemble with DNA to form particles that are effective for gene delivery. Small changes to polymer synthesis conditions, particle formulation conditions, and polymer structure provides significant changes to efficacy in a cell-type dependent manner. Polymers presented here are more effective than commercially available materials, such as LIPOFECTAMINE 2000™, FUGENE®, or polyethylenimine (PEI), for gene delivery to cancerous fibroblasts or human primary fibroblasts. The presently disclosed materials may be useful for cancer therapeutics and regenerative medicine.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 10, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jordan J. Green, Joel C. Sunshine, Nupura S. Bhise, Ron B. Shmueli, Stephany Y. Tzeng
  • Patent number: 8992991
    Abstract: Degradable polymers were synthesized that self-assemble with DNA to form particles that are effective for gene delivery. Small changes to polymer synthesis conditions, particle formulation conditions, and polymer structure provides significant changes to efficacy in a cell-type dependent manner. Polymers presented here are more effective than commercially available materials, such as LIPOFECTAMINE 2000™, FUGENE®, or polyethylenimine (PEI), for gene delivery to cancerous fibroblasts or human primary fibroblasts. The presently disclosed materials may be useful for cancer therapeutics and regenerative medicine.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: March 31, 2015
    Assignee: The Johns Hopkins University
    Inventors: Jordan J. Green, Joel C. Sunshine, Nupura S. Bhise, Ron B. Shmueli, Stephany Y. Tzeng
  • Publication number: 20120128782
    Abstract: Degradable polymers were synthesized that self-assemble with DNA to form particles that are effective for gene delivery. Small changes to polymer synthesis conditions, particle formulation conditions, and polymer structure provides significant changes to efficacy in a cell-type dependent manner. Polymers presented here are more effective than commercially available materials, such as LIPOFECTAMINE 2000™, FUGENE®, or polyethylenimine (PEI), for gene delivery to cancerous fibroblasts or human primary fibroblasts. The presently disclosed materials may be useful for cancer therapeutics and regenerative medicine.
    Type: Application
    Filed: May 17, 2010
    Publication date: May 24, 2012
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jordan J. Green, Joel C. Sunshine, Nupura S. Bhise, Ron B. Shmueli, Stephany Y. Tzeng