Patents by Inventor Ron Weimer

Ron Weimer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140159136
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Application
    Filed: February 3, 2014
    Publication date: June 12, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Ron Weimer, Kyu Min, Tom Graettinger, Nirmal Ramaswamy
  • Patent number: 8643082
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: February 4, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Ron Weimer, Kyu Min, Tom Graettinger, Nirmal Ramaswamy
  • Publication number: 20120032252
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 9, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Ron Weimer, Kyu Min, Tom Graettinger, Nirmal Ramaswamy
  • Patent number: 8058140
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: November 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Ron Weimer, Kyu Min, Tom Graettinger, Nirmal Ramaswamy
  • Publication number: 20100197131
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 5, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Ron Weimer, Kyu Min, Tom Graettinger, Nirmal Ramaswamy
  • Patent number: 7705389
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: April 27, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Ron Weimer, Kyu Min, Tom Graettinger, Nirmal Ramaswamy
  • Publication number: 20090057744
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 5, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Ron Weimer, Kyu Min, Tom Graettinger, Nirmal Ramaswamy
  • Patent number: 6734062
    Abstract: The invention includes a method of forming a DRAM cell. A first substrate is formed to include first DRAM sub-structures separated from one another by an insulative material. A second semiconductor substrate including a monocrystalline material is bonded to the first substrate. After the bonding, second DRAM sub-structures are formed in electrical connection with the first DRAM sub-structures. The invention also includes a semiconductor structure which includes a capacitor structure, and a first substrate defined to encompass the capacitor structure. The semiconductor structure further includes a monocrystalline silicon substrate bonded to the first substrate and over the capacitor structure. Additionally, the semiconductor structure comprises a transistor gate on the monocrystalline silicon substrate and operatively connected with the capacitor structure to define a DRAM cell.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: May 11, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Kevin L. Beaman, John T. Moore, Ron Weimer
  • Patent number: 6707090
    Abstract: The invention includes a method of forming a DRAM cell. A first substrate is formed to include first DRAM sub-structures separated from one another by an insulative material. A second semiconductor substrate containing a monocrystalline material is bonded to the first substrate. After the bonding, second DRAM sub-structures are formed in electrical connection with the first DRAM sub-structures. The invention also includes a semiconductor structure which has a capacitor structure, and a first substrate defined to encompass the capacitor structure. The semiconductor structure further contains a monocrystalline silicon substrate bonded to the first substrate and over the capacitor structure. Additionally, the semiconductor structure includes a transistor gate on the monocrystalline silicon substrate and operatively connected with the capacitor structure to define a DRAM cell.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: March 16, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Kevin L. Beaman, John T. Moore, Ron Weimer
  • Patent number: 6639243
    Abstract: The invention includes a method of forming a DRAM cell. A first substrate is formed to include first DRAM sub-structures separated from one another by an insulative material. A second semiconductor substrate having a monocrystalline material is bonded to the first substrate. After the bonding, second DRAM sub-structures are formed in electrical connection with the first DRAM sub-structures. The invention also includes a semiconductor structure which has a capacitor structure, and a first substrate defined to encompass the capacitor structure. The semiconductor structure further includes a monocrystalline silicon substrate bonded to the first substrate and over the capacitor structure. Additionally, the semiconductor structure includes a transistor gate on the monocrystalline silicon substrate and operatively connected with the capacitor structure to define a DRAM cell.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: October 28, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Kevin L. Beaman, John T. Moore, Ron Weimer
  • Publication number: 20030160242
    Abstract: The invention includes a method of forming a DRAM cell. A first substrate is formed to comprise first DRAM sub-structures separated from one another by an insulative material. A second semiconductor substrate comprising a monocrystalline material is bonded to the first substrate. After the bonding, second DRAM sub-structures are formed in electrical connection with the first DRAM sub-structures. The invention also includes a semiconductor structure which comprises a capacitor structure, and a first substrate defined to encompass the capacitor structure. The semiconductor structure further comprises a monocrystalline silicon substrate bonded to the first substrate and over the capacitor structure. Additionally, the semiconductor structure comprises a transistor gate on the monocrystalline silicon substrate and operatively connected with the capacitor structure to define a DRAM cell.
    Type: Application
    Filed: March 20, 2003
    Publication date: August 28, 2003
    Inventors: Fernando Gonzalez, Kevin L. Beaman, John T. Moore, Ron Weimer
  • Publication number: 20030003655
    Abstract: The invention includes a method of forming a DRAM cell. A first substrate is formed to comprise first DRAM sub-structures separated from one another by an insulative material. A second semiconductor substrate comprising a monocrystalline material is bonded to the first substrate. After the bonding, second DRAM substructures are formed in electrical connection with the first DRAM sub-structures. The invention also includes a semiconductor structure which comprises a capacitor structure, and a first substrate defined to encompass the capacitor structure. The semiconductor structure further comprises a monocrystalline silicon substrate bonded to the first substrate and over the capacitor structure. Additionally, the semiconductor structure comprises a transistor gate on the monocrystalline silicon substrate and operatively connected with the capacitor structure to define a DRAM cell.
    Type: Application
    Filed: July 1, 2002
    Publication date: January 2, 2003
    Inventors: Fernando Gonzalez, Kevin L. Beaman, John T. Moore, Ron Weimer
  • Patent number: 6458714
    Abstract: Disclosed is a method of selective oxidation of components of a semiconductor transistor containing silicon in the presence of high conductivity metal or metal alloys. A high temperature annealing step allows hydrogen gas to permeate the surface of a metal or metal alloy and creates a hydrogen-terminated passivation layer that surrounds the metallic layer. This passivating layer protects the underlying metal or metal alloy from oxidation by oxygen or water and reduces any oxidized metal present back into the constituent metal or metal alloy. In a subsequent wet oxidation step the source and drain regions of a semiconductor transistor gate electrode are reoxidized without oxidation of the passivated metal or metal alloy. The process does not consume the metal or metal alloy layer, insures that the overall gate electrode resistance remains low, and preserves the desirable characteristics of the gate electrode that insure a quality component with superior longevity.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: October 1, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Don Carl Powell, Ron Weimer, Lyle Breiner, Howard Rhodes, Jeff McKee, David Kubista
  • Patent number: 6429070
    Abstract: The invention includes a method of forming a DRAM cell. A first substrate is formed to include first DRAM sub-structures separated from one another by an insulative material. A second semiconductor substrate including a monocrystalline material is bonded to the first substrate. After the bonding, second DRAM sub-structures are formed in electrical connection with the first DRAM sub-structures. The invention also includes a semiconductor structure which includes a capacitor structure, and a first substrate defined to encompass the capacitor structure. The semiconductor structure further includes a monocrystalline silicon substrate bonded to the first substrate and over the capacitor structure. Additionally, the semiconductor structure includes a transistor gate on the monocrystalline silicon substrate and operatively connected with the capacitor structure to define a DRAM cell.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: August 6, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Kevin L. Beaman, John T. Moore, Ron Weimer
  • Publication number: 20020055225
    Abstract: The invention includes a method of forming a DRAM cell. A first substrate is formed to comprise first DRAM sub-structures separated from one another by an insulative material. A second semiconductor substrate comprising a monocrystalline material is bonded to the first substrate. After the bonding, second DRAM sub-structures are formed in electrical connection with the first DRAM sub-structures. The invention also includes a semiconductor structure which comprises a capacitor structure, and a first substrate defined to encompass the capacitor structure. The semiconductor structure further comprises a monocrystalline silicon substrate bonded to the first substrate and over the capacitor structure. Additionally, the semiconductor structure comprises a transistor gate on the monocrystalline silicon substrate and operatively connected with the capacitor structure to define a DRAM cell.
    Type: Application
    Filed: December 5, 2001
    Publication date: May 9, 2002
    Inventors: Fernando Gonzalez, Kevin L. Beaman, John T. Moore, Ron Weimer