Patents by Inventor Ronald A. Rojeski

Ronald A. Rojeski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10461324
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: October 29, 2019
    Assignee: CF TRAVERSE LLC
    Inventor: Ronald A. Rojeski
  • Publication number: 20190123348
    Abstract: An energy storage device includes a nano-structured cathode. The cathode includes a conductive substrate, an underframe and an active layer. The underframe includes structures such as nano-filaments and/or aerogel. The active layer optionally includes a catalyst disposed within the active layer, the catalyst being configured to catalyze the dissociation of cathode active material.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventor: Ronald A. Rojeski
  • Publication number: 20190123349
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on carbon nanofibers (CNF). The unique cup-stacking graphitic microstructure makes the CNFs an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 25, 2019
    Inventors: Jun Li, Ronald A. Rojeski, Steven Klankowski
  • Patent number: 10205166
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on carbon nanofibers (CNF). The unique cup-stacking graphitic microstructure makes the CNFs an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: February 12, 2019
    Assignee: CF Traverse LLC
    Inventors: Jun Li, Ronald A Rojeski, Steven Klankowski
  • Patent number: 10193142
    Abstract: An energy storage device includes a nano-structured cathode. The cathode includes a conductive substrate, an underframe and an active layer. The underframe includes structures such as nano-filaments and/or aerogel. The active layer optionally includes a catalyst disposed within the active layer, the catalyst being configured to catalyze the dissociation of cathode active material.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: January 29, 2019
    Assignee: CF Traverse LLC
    Inventor: Ronald A. Rojeski
  • Publication number: 20180351156
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: July 23, 2018
    Publication date: December 6, 2018
    Inventor: Ronald A. Rojeski
  • Publication number: 20180240602
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: April 24, 2018
    Publication date: August 23, 2018
    Inventor: Ronald A. Rojeski
  • Patent number: 10056602
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: August 21, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Publication number: 20180226643
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: April 5, 2018
    Publication date: August 9, 2018
    Inventor: Ronald A. Rojeski
  • Publication number: 20180226644
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: April 5, 2018
    Publication date: August 9, 2018
    Inventor: Ronald A. Rojeski
  • Publication number: 20180219384
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventor: Ronald A. Rojeski
  • Publication number: 20180219223
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventor: Ronald A. Rojeski
  • Publication number: 20180219222
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventor: Ronald A. Rojeski
  • Publication number: 20180198121
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventor: Ronald A. Rojeski
  • Patent number: 9979017
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 22, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9966197
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 8, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9941709
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nanofiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 10, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Patent number: 9917300
    Abstract: A novel hybrid lithium-ion anode material based on coaxially coated Si shells on vertically aligned carbon nano fiber (CNF) arrays. The unique cup-stacking graphitic microstructure makes the bare vertically aligned CNF array an effective Li+ intercalation medium. Highly reversible Li+ intercalation and extraction were observed at high power rates. More importantly, the highly conductive and mechanically stable CNF core optionally supports a coaxially coated amorphous Si shell which has much higher theoretical specific capacity by forming fully lithiated alloy. Addition of surface effect dominant sites in close proximity to the intercalation medium results in a hybrid device that includes advantages of both batteries and capacitors.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 13, 2018
    Assignee: CF Traverse LLC
    Inventor: Ronald A Rojeski
  • Publication number: 20170309920
    Abstract: An energy storage device includes a nano-structured cathode. The cathode includes a conductive substrate, and underframe and an active layer. The underframe includes structures such as nano-filaments and/or aerogel. The active layer optionally includes a catalyst disposed within the active layer, the catalyst being configured to catalyze the dissociation of cathode active material.
    Type: Application
    Filed: July 10, 2017
    Publication date: October 26, 2017
    Applicant: TRAVERSE TECHNOLOGIES CORP.
    Inventor: Ronald A. Rojeski
  • Publication number: 20170309919
    Abstract: An energy storage device includes a nano-structured cathode. The cathode includes a conductive substrate, and underframe and an active layer. The underframe includes structures such as nano-filaments and/or aerogel. The active layer optionally includes a catalyst disposed within the active layer, the catalyst being configured to catalyze the dissociation of cathode active material.
    Type: Application
    Filed: July 10, 2017
    Publication date: October 26, 2017
    Applicant: TRAVERSE TECHNOLOGIES CORP.
    Inventor: Ronald A. Rojeski