Patents by Inventor Ronald Alan Leonard

Ronald Alan Leonard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180156999
    Abstract: Port tap fiber optic modules and related systems and methods for monitoring optical networks are disclosed. In certain embodiments, the port tap fiber optic modules disclosed herein include connections that employ a universal wiring scheme. The universal writing scheme ensure compatibility of attached monitor devices to permit a high density of both live and tap fiber optic connections, and to maintain proper polarity of optical fibers among monitor devices and other devices. In other embodiments, the port tap fiber optic modules are provided as high-density port tap fiber optic modules. The high-density port tap fiber optic modules are configured to support a specified density of live and passive tap fiber optic connections. Providing high-density port tap fiber optic modules can support greater connection bandwidth capacity to provide a migration path for higher data rates while minimizing the space needed for such fiber optic equipment.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 7, 2018
    Inventors: Scott Eaker Buff, Terry Lee Cooke, Christopher Shawn Houser, Ronald Alan Leonard, Brian Keith Rhoney
  • Patent number: 9411121
    Abstract: A port tap cable for supporting live optical connections in a fiber optic network includes one or more fiber optic splitters, which each receive an optical signal from a live input optical fiber of a live input fiber optic cable leg. Each fiber optic splitter splits each optical signal and transmits the signal to a live output optical fiber of a live output fiber optic cable leg and a tap output optical fiber of a tap output fiber optic cable leg. The one or more splitters are enclosed in a furcation, thereby forming a port tap cable that allows for monitoring of optical signals within an active fiber optic network without the need for interrupting network operations. This arrangement also allows for monitoring individual ports in an existing network installation.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: August 9, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Scott Eaker Buff, Terry Lee Cooke, Christopher Shawn Houser, Ronald Alan Leonard
  • Patent number: 9110268
    Abstract: A combination of a pulling grip assembly and a fiber optic cable assembly for installing the fiber optic cable, including: a flexible grip having an open loop region for pull-force engagement and a closed region engaged with the strength member in a fiber optic cable assembly; a first heat shrunk member positioned about a portion of the distal end of the fiber optic cable assembly and the distal end of cable; and a second heat shrunk member positioned about a portion of the closed region of the flexible grip and the proximal end of the fiber optic cable assembly. A method of using the pulling grip assembly and a quick release pulling grip kit for installing fiber optic cable, as defined herein, are also disclosed.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: August 18, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Ronald Alan Leonard, Matthew Wade Smith, Wesley Allan Yates
  • Publication number: 20150016788
    Abstract: A port tap cable for supporting live optical connections in a fiber optic network includes one or more fiber optic splitters, which each receive an optical signal from a live input optical fiber of a live input fiber optic cable leg. Each fiber optic splitter splits each optical signal and transmits the signal to a live output optical fiber of a live output fiber optic cable leg and a tap output optical fiber of a tap output fiber optic cable leg. The one or more splitters are enclosed in a furcation, thereby forming a port tap cable that allows for monitoring of optical signals within an active fiber optic network without the need for interrupting network operations. This arrangement also allows for monitoring individual ports in an existing network installation.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Scott Eaker Buff, Terry Lee Cooke, Christopher Shawn Houser, Ronald Alan Leonard
  • Patent number: 8917968
    Abstract: Embodiments disclosed herein include furcation plugs having segregated channels to guide epoxy into passageways for optical fiber furcation, and related assemblies and methods. The furcation plugs secure furcated fiber optic cables to fiber optic equipment to prevent the furcated fiber optic cables from being damaged. The furcation plugs, as part of fiber optic furcation assemblies, are typically installed on fiber optic equipment that provides fiber optic components to which the optical fibers are connected. The fiber optic cables may be inserted into fiber passageways of the furcation plugs and secured to the furcation plugs with epoxy. The epoxy may be guided into the fiber passageways through segregated epoxy channels of the furcation plug. In this manner, epoxy may be more uniformly distributed within the fiber passageway to improve the epoxy bonds by reducing the occurrence of air pockets known as voids, which can weaken the epoxy bonds and cause attenuation.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: December 23, 2014
    Assignee: Corning Optical Communications LLC
    Inventors: Terry Lee Cooke, Christopher Shawn Houser, Ronald Alan Leonard, James McKinnley Wilson
  • Publication number: 20140126873
    Abstract: Embodiments disclosed herein include furcation plugs having segregated channels to guide epoxy into passageways for optical fiber furcation, and related assemblies and methods. The furcation plugs secure furcated fiber optic cables to fiber optic equipment to prevent the furcated fiber optic cables from being damaged. The furcation plugs, as part of fiber optic furcation assemblies, are typically installed on fiber optic equipment that provides fiber optic components to which the optical fibers are connected. The fiber optic cables may be inserted into fiber passageways of the furcation plugs and secured to the furcation plugs with epoxy. The epoxy may be guided into the fiber passageways through segregated epoxy channels of the furcation plug. In this manner, epoxy may be more uniformly distributed within the fiber passageway to improve the epoxy bonds by reducing the occurrence of air pockets known as voids, which can weaken the epoxy bonds and cause attenuation.
    Type: Application
    Filed: February 20, 2013
    Publication date: May 8, 2014
    Inventors: Terry Lee Cooke, Christopher Shawn Houser, Ronald Alan Leonard, James McKinnley Wilson
  • Publication number: 20130308915
    Abstract: Port tap fiber optic modules and related systems and methods for monitoring optical networks are disclosed. In certain embodiments, the port tap fiber optic modules disclosed herein include connections that employ a universal wiring scheme. The universal writing scheme ensure compatibility of attached monitor devices to permit a high density of both live and tap fiber optic connections, and to maintain proper polarity of optical fibers among monitor devices and other devices. In other embodiments, the port tap fiber optic modules are provided as high-density port tap fiber optic modules. The high-density port tap fiber optic modules are configured to support a specified density of live and passive tap fiber optic connections. Providing high-density port tap fiber optic modules can support greater connection bandwidth capacity to provide a migration path for higher data rates while minimizing the space needed for such fiber optic equipment.
    Type: Application
    Filed: October 30, 2012
    Publication date: November 21, 2013
    Inventors: Scott Eaker Buff, Terry Lee Cooke, Christopher Shawn Houser, Ronald Alan Leonard, Brian Keith Rhoney
  • Publication number: 20130308916
    Abstract: Port tap fiber optic modules and related systems and methods for monitoring optical networks are disclosed. In certain embodiments, the port tap fiber optic modules disclosed herein include connections that employ a universal wiring scheme. The universal writing scheme ensure compatibility of attached monitor devices to permit a high density of both live and tap fiber optic connections, and to maintain proper polarity of optical fibers among monitor devices and other devices. In other embodiments, the port tap fiber optic modules are provided as high-density port tap fiber optic modules. The high-density port tap fiber optic modules are configured to support a specified density of live and passive tap fiber optic connections. Providing high-density port tap fiber optic modules can support greater connection bandwidth capacity to provide a migration path for higher data rates while minimizing the space needed for such fiber optic equipment.
    Type: Application
    Filed: October 30, 2012
    Publication date: November 21, 2013
    Inventors: Scott Eaker Buff, Terry Lee Cooke, Christopher Shawn Houser, Ronald Alan Leonard, Brian Keith Rhoney
  • Publication number: 20130134370
    Abstract: A combination of a pulling grip assembly and a fiber optic cable assembly for installing the fiber optic cable, including: a flexible grip having an open loop region for pull-force engagement and a closed region engaged with the strength member in a fiber optic cable assembly; a first heat shrunk member positioned about a portion of the distal end of the fiber optic cable assembly and the distal end of cable; and a second heat shrunk member positioned about a portion of the closed region of the flexible grip and the proximal end of the fiber optic cable assembly. A method of using the pulling grip assembly and a quick release pulling grip kit for installing fiber optic cable, as defined herein, are also disclosed.
    Type: Application
    Filed: October 22, 2012
    Publication date: May 30, 2013
    Inventors: Ronald Alan Leonard, Matthew Wade Smith, Wesley Allan Yates