Patents by Inventor Ronald Arif

Ronald Arif has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9349910
    Abstract: A light emitting device comprising a staggered composition quantum well (QW) has a step-function-like profile in the QW, which provides higher radiative efficiency and optical gain by providing improved electron-hole wavefunction overlap. The staggered QW includes adjacent layers having distinctly different compositions. The staggered QW has adjacent layers Xn, wherein X is a quantum well component and in one quantum well layer n is a material composition selected for emission at a first target light regime, and in at least one other quantum well layer n is a distinctly different composition for emission at a different target light regime. X may be an In-content layer and the multiple Xn-containing layers provide a step function In-content profile.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: May 24, 2016
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee, Hongping Zhao
  • Patent number: 8907321
    Abstract: A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 ? and 24 ? thick, respectively.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 9, 2014
    Assignee: Lehigh Univeristy
    Inventors: Nelson Tansu, Hongping Zhao, Guangyu Liu, Ronald Arif
  • Publication number: 20140191189
    Abstract: A light emitting device comprising a staggered composition quantum well (QW) has a step-function-like profile in the QW, which provides higher radiative efficiency and optical gain by providing improved electron-hole wavefunction overlap. The staggered QW includes adjacent layers having distinctly different compositions. The staggered QW has adjacent layers Xn, wherein X is a quantum well component and in one quantum well layer n is a material composition selected for emission at a first target light regime, and in at least one other quantum well layer n is a distinctly different composition for emission at a different target light regime. X may be an In-content layer and the multiple Xn-containing layers provide a step function In-content profile.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 10, 2014
    Applicant: LEHIGH UNIVERSITY
    Inventors: Nelson TANSU, Ronald A. ARIF, Yik Khoon EE, Hongping ZHAO
  • Patent number: 8659005
    Abstract: A light emitting device comprising a staggered composition quantum well (QW) has a step-function-like profile in the QW, which provides higher radiative efficiency and optical gain by providing improved electron-hole wavefunction overlap. The staggered QW includes adjacent layers having distinctly different compositions. The staggered QW has adjacent layers Xn wherein X is a quantum well component and in one quantum well layer n is a material composition selected for emission at a first target light regime, and in at least one other quantum well layer n is a distinctly different composition for emission at a different target light regime. X may be an In-content layer and the multiple Xn-containing a step function In-content profile.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: February 25, 2014
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee, Hongping Zhao
  • Patent number: 8076667
    Abstract: A tight emitting device comprises at least one p-type layer and at least one n-type layer and a microlens array surface. A method for improving light efficiency of a light emitting device, comprises depositing polystyrene microspheres by rapid convection deposition on surface of light emitting device; depositing a monolayer of close-packed SIO2 microspheres onto the polystyrene microspheres; and heal treating to convert the polystyrene microspheres into a planar microlayer film to provide a surface comprising substantially two-dimensional (2D) hexagonal close-packed SIO2 colloidal microsphere crystals partially imposed into a polystyrene monolayer film.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: December 13, 2011
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Yik Khoon Ee, James F. Gilchrist, Pisit Kumnorkaew, Ronald A. Arif
  • Patent number: 8030641
    Abstract: A gallium nitride-based device has ? first GaN layer and ? type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer, wherein the InGaN comprises ? graded molar In concentration.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: October 4, 2011
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
  • Publication number: 20110147702
    Abstract: A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 ? and 24 ? thick, respectively.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: Lehigh University
    Inventors: Nelson Tansu, Hongping Zhao, Guangyu Liu, Ronald Arif
  • Publication number: 20100327783
    Abstract: A light emitting device comprising a staggered composition quantum well.
    Type: Application
    Filed: December 24, 2007
    Publication date: December 30, 2010
    Applicant: LEHIGH UNIVERSITY
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee, Hongping Zhao
  • Patent number: 7842531
    Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer comprising 1.5 to 8% As concentration. The type II quantum well emits in the 400 to 700 nm region with reduced polarization affect.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: November 30, 2010
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
  • Publication number: 20090315013
    Abstract: A tight emitting device comprises at least one p-type layer and at least one n-type layer and a microlens array surface. A method for improving light efficiency of a light emitting device, comprises depositing polystyrene microspheres by rapid convection deposition on surface of light emitting device; depositing a monolayer of close-packed SIO2 microspheres onto the polystyrene microspheres; and heal treating to convert the polystyrene microspheres into a planar microlayer film to provide a surface comprising substantially two-dimensional (2D) hexagonal close-packed S1O2 colloidal microsphere crystals partially imposed into a polystyrene monolayer film.
    Type: Application
    Filed: December 24, 2007
    Publication date: December 24, 2009
    Applicant: LEHIGH UNIVERSITY
    Inventors: Nelson Tansu, Yik Khoon Ee, James F. Gilchrist, Pisit Kumnorkaew, Ronald A. Arif
  • Publication number: 20090162963
    Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer comprising 1.5 to 8% As concentration. The type II quantum well emits in the 400 to 700 nm region with reduced polarization affect.
    Type: Application
    Filed: March 5, 2009
    Publication date: June 25, 2009
    Applicant: LEHIGH UNIVERSITY
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
  • Patent number: 7518139
    Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer comprising 1.5 to 8% As concentration. The type II quantum well emits in the 400 to 700 nm region with reduced polarization affect.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 14, 2009
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
  • Publication number: 20080144685
    Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer, wherein the InGaN comprises a graded molar In concentration.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 19, 2008
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
  • Publication number: 20080099755
    Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer comprising 1.5 to 8% As concentration. The type II quantum well emits in the 400 to 700 nm region with reduced polarization affect.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Applicant: Lehigh University
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee