Patents by Inventor Ronald B. Sharpless

Ronald B. Sharpless has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9351693
    Abstract: An imaging system (500) includes an annular shaped rotating gantry (504) having an aperture (501) and configured to support at least a radiation source, wherein the rotating gantry rotates about a rotation axis (508) around an examination region, and wherein the rotation axis is located within the aperture in a center region (508) of the examination region. The imaging system further includes a stationary gantry (502), configured to rotatably support the rotating gantry. The stationary gantry includes a gantry base (516), an annular shaped tilt frame (518) that rotatably supports the rotating gantry, and a tilt system (520) affixed to and between the gantry base and the tilt frame, wherein the tilt system defines a tilt axis (522) of the stationary gantry, the tilt axis is located between the gantry base and the rotation axis, and the tilt frame tilts about the tilt axis.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 31, 2016
    Assignee: KONLIJKE PHILIPS N.V.
    Inventors: Ronald B. Sharpless, Johannes Balthasar Maria Soetens
  • Patent number: 9313867
    Abstract: An imaging system (100) includes a stationary gantry (102), a rotating gantry (104) that rotates around an examination region about a z-axis, an annular support (106) that is statically affixed to the stationary gantry and that rotatably couples the rotating gantry to the stationary gantry, and a radial compliant ring (108) disposed between the annular support and the rotating gantry. In a variation, the imaging system also includes an axial compliant ring (112) disposed perpendicular to the radial compliant ring, statically affixed to the annular support and extending in part in a recess (206) of the rotating gantry.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 12, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Ronald B. Sharpless
  • Patent number: 9173627
    Abstract: An imaging system (100) includes a stationary gantry (102), a rotating gantry (104), a radiation source (110), and a detector array (112). The detector array detects radiation for a plurality of integration periods during a rotating gantry revolution, the plurality of integration periods corresponds to different angular position ranges, and the detector array generates a signal indicative of the detected radiation respectively for the plurality of integration periods. The system further includes an integration period controller (118) that generates an integration period timing signal that includes timing for a start of each of the integration periods for a revolution of the rotating gantry based at least on a time duration of a previous revolution of the rotating gantry around the examination region, wherein the integration timing signal is used trigger the plurality of integration periods.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Ronald B. Sharpless
  • Patent number: 8899833
    Abstract: An imaging system (100) includes a rotating frame (106), a second frame (102, 104), and a support (108) that rotatably couples the rotating frame (106) to the second frame (102, 104). One of the rotating frame (106) or the second frame (102, 104) is compliantly coupled to the support (108) and the other of the rotating frame (106) or the second frame (102, 104) is rigidly coupled to the support (108). An imaging system includes a rotating frame (106), a tilt frame (104), and a stationary frame (102). A frame stiffener (110) provides structural support for the rotating and tilt frames (106, 104) along transverse axes. An imaging system (100) includes a rotating frame (106) and a second frame (102, 104) that rotatably supports the rotating frame (106). The rotating frame (106) is coupled to the second frame (102, 104) through a contactless bearing and controlled by a contactless mechanism. A braking component (112) selectively applies a brake to the rotating frame (106).
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: December 2, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Ronald B Sharpless, Samuel Andreas Johansson, Jeremy D. Pettinato, Joshua S. Sapp, John Cressman
  • Publication number: 20140321602
    Abstract: An imaging system (100) includes a stationary gantry (102), a rotating gantry (104) that rotates around an examination region about a z-axis, an annular support (106) that is statically affixed to the stationary gantry and that rotatably couples the rotating gantry to the stationary gantry, and a radial compliant ring (108) disposed between the annular support and the rotating gantry. In a variation, the imaging system also includes an axial compliant ring (112) disposed perpendicular to the radial compliant ring, statically affixed to the annular support and extending in part in a recess (206) of the rotating gantry.
    Type: Application
    Filed: December 7, 2012
    Publication date: October 30, 2014
    Inventor: Ronald B. Sharpless
  • Patent number: 8807833
    Abstract: An imaging system includes a stationary frame (104) and a pivotable frame (106) that is pivotably attached to the stationary frame (104) and configured to pivot about a transverse axis (108). A rotating frame (110) is rotatably supported by the pivotable portion (106) and configured to rotate about a longitudinal axis (114) around an examination region (112) and a rotating frame balancer (118) selectively introduces a rotating frame mass imbalance. A radiation source (116) is affixed to the rotating frame (110) and emits radiation from a focal spot, wherein the radiation traverses the examination region (112). A detector array (128) detects the radiation that traverses the examination region (112) and generates a signal indicative thereof.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 19, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Ronald B. Sharpless
  • Publication number: 20140205059
    Abstract: An imaging system (500) includes an annular shaped rotating gantry (504) having an aperture (501) and configured to support at least a radiation source, wherein the rotating gantry rotates about a rotation axis (508) around an examination region, and wherein the rotation axis is located within the aperture in a center region (508) of the examination region. The imaging system further includes a stationary gantry (502), configured to rotatably support the rotating gantry. The stationary gantry includes a gantry base (516), an annular shaped tilt frame (518) that rotatably supports the rotating gantry, and a tilt system (520) affixed to and between the gantry base and the tilt frame, wherein the tilt system defines a tilt axis (522) of the stationary gantry, the tilt axis is located between the gantry base and the rotation axis, and the tilt frame tilts about the tilt axis.
    Type: Application
    Filed: August 2, 2012
    Publication date: July 24, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Ronald B. Sharpless, Johannes Balthasar Maria Soetens
  • Patent number: 8693621
    Abstract: A medical imaging system includes a generally stationary gantry (102) and a rotating gantry (106), rotatably supported by the generally stationary gantry (102), that rotates about a longitudinal axis around an examination region. The medical imaging system further includes a radiation source (112) that emits a radiation beam that traverses the examination region. The radiation source (112) is moveably affixed to the rotating gantry (106) so as to translate in a direction of the longitudinal axis with respect to the rotating gantry (106) while scanning a subject in the examination region. The medical imaging system further includes a detector array (120) that detects the radiation beam that traverses the examination region and generates a signal indicative thereof. The detector array (120) is moveably affixed to the rotating gantry (106) so as to move in coordination with the radiation source (112) while scanning the subject in the examination region.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: April 8, 2014
    Assignee: Koninklijke Philips N. V.
    Inventors: Axel Thran, Claas Bontus, Peter Forthmann, Roland Proksa, Ronald B. Sharpless, Dominic J. Heuscher, Felix Peeters, Johannes Bathazar Maria Soetens
  • Patent number: 8681930
    Abstract: A medical imaging apparatus includes a stationary gantry and a generally spool-shaped rotating gantry (304), which rotates about an examination region about a longitudinal axis. The rotating gantry includes a first flange (320), a second flange (322), and a plurality of elongate structural elements (402) that are disposed between and couple' the first and second flanges. The first flange (320) is rotatably coupled to the stationary gantry, and the second flange (322) extends radially in a plane perpendicular to the longitudinal axis, thereby providing radial stiffness for the rotating gantry. A radiation source is affixed to the rotating gantry between the first and second flanges, and a detector array is affixed to the rotating gantry between the first and second flanges, opposite the examination region from the radiation source.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: March 25, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Ronald B. Sharpless, Rosemarie Sheridan, John P. Cressman
  • Publication number: 20130287165
    Abstract: An imaging system (100) includes a stationary gantry (102), a rotating gantry (104), a radiation source (110), and a detector array (112). The detector array detects radiation for a plurality of integration periods during a rotating gantry revolution, the plurality of integration periods corresponds to different angular position ranges, and the detector array generates a signal indicative of the detected radiation respectively for the plurality of integration periods. The system further includes an integration period controller (118) that generates an integration period timing signal that includes timing for a start of each of the integration periods for a revolution of the rotating gantry based at least on a time duration of a previous revolution of the rotating gantry around the examination region, wherein the integration timing signal is used trigger the plurality of integration periods.
    Type: Application
    Filed: January 6, 2012
    Publication date: October 31, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Ronald B. Sharpless
  • Patent number: 8282278
    Abstract: A medical imaging apparatus (100) includes a rotating gantry (302). The rotating gantry (302) includes a first side (108) and a second side (302, 304). The first and second side (108 and 302, 304) are spaced apart from each other along a longitudinal axis, thereby defining a plenum (116) therebetween. The first side (108) includes at least one material free region (110). At least one air mover (126), located in the plenum (116), that expels air in the plenum (116) through the at least one material free region (110).
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: October 9, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Ronald B. Sharpless
  • Publication number: 20120027183
    Abstract: An imaging system (100) includes a rotating frame (106), a second frame (102, 104), and a support (108) that rotatably couples the rotating frame (106) to the second frame (102, 104). One of the rotating frame (106) or the second frame (102, 104) is compliantly coupled to the support (108) and the other of the rotating frame (106) or the second frame (102, 104) is rigidly coupled to the support (108). An imaging system includes a rotating frame (106), a tilt frame (104), and a stationary frame (102). A frame stiffener (110) provides structural support for the rotating and tilt frames (106, 104) along transverse axes. An imaging system (100) includes a rotating frame (106) and a second frame (102, 104) that rotatably supports the rotating frame (106). The rotating frame (106) is coupled to the second frame (102, 104) through a contactless bearing and controlled by a contactless mechanism. A braking component (112) selectively applies a brake to the rotating frame (106).
    Type: Application
    Filed: December 9, 2009
    Publication date: February 2, 2012
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Ronald B. Sharpless, Samuel Andreas, Jeremy D. Pettinato, Joshua S. Sapp, John Cressman
  • Publication number: 20110200176
    Abstract: An imaging system includes a stationary frame (104) and a pivotable frame (106) that is pivotably attached to the stationary frame (104) and configured to pivot about a transverse axis (108). A rotating frame (110) is rotatably supported by the pivotable portion (106) and configured to rotate about a longitudinal axis (114) around an examination region (112) and a rotating frame balancer (118) selectively introduces a rotating frame mass imbalance. A radiation source (116) is affixed to the rotating frame (110) and emits radiation from a focal spot, wherein the radiation traverses the examination region (112). A detector array (128) detects the radiation that traverses the examination region (112) and generates a signal indicative thereof.
    Type: Application
    Filed: October 29, 2009
    Publication date: August 18, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Ronald B. Sharpless
  • Publication number: 20110058644
    Abstract: A medical imaging system includes a generally stationary gantry (102) and a rotating gantry (106), rotatably supported by the generally stationary gantry (102), that rotates about a longitudinal axis around an examination region. The medical imaging system further includes a radiation source (112) that emits a radiation beam that traverses the examination region. The radiation source (112) is moveably affixed to the rotating gantry (106) so as to translate in a direction of the longitudinal axis with respect to the rotating gantry (106) while scanning a subject in the examination region. The medical imaging system further includes a detector array (120) that detects the radiation beam that traverses the examination region and generates a signal indicative thereof. The detector array (120) is moveably affixed to the rotating gantry (106) so as to move in coordination with the radiation source (112) while scanning the subject in the examination region.
    Type: Application
    Filed: April 30, 2009
    Publication date: March 10, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Axel Thran, Claas Bontus, Peter Forthmann, Roland Proksa, Ronald B. Sharpless, Dominic J. Heuscher, Felix Peeters, Johannes Bathazar Maria Soetens
  • Publication number: 20100266096
    Abstract: A medical imaging apparatus (100) includes a rotating gantry (302). The rotating gantry (302) includes a first side (108) and a second side (302, 304). The first and second side (108 and 302, 304) are spaced apart from each other along a longitudinal axis, thereby defining a plenum (116) therebetween. The first side (108) includes at least one material free region (110). At least one air mover (126), located in the plenum (116), that expels air in the plenum (116) through the at least one material free region (110).
    Type: Application
    Filed: November 4, 2008
    Publication date: October 21, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Ronald B. Sharpless
  • Publication number: 20100266105
    Abstract: A medical imaging apparatus includes a stationary gantry and a generally spool-shaped rotating gantry (304), which rotates about an examination region about a longitudinal axis. The rotating gantry includes a first flange (320), a second flange (322), and a plurality of elongate structural elements (402) that are disposed between and couple' the first and second flanges. The first flange (320) is rotatably coupled to the stationary gantry, and the second flange (322) extends radially in a plane perpendicular to the longitudinal axis, thereby providing radial stiffness for the rotating gantry. A radiation source is affixed to the rotating gantry between the first and second flanges, and a detector array is affixed to the rotating gantry between the first and second flanges, opposite the examination region from the radiation source.
    Type: Application
    Filed: November 4, 2008
    Publication date: October 21, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ronald B. Sharpless, Rosemarie Sheridan, John P. Cressman
  • Patent number: 7495441
    Abstract: A magnetic resonance imaging scanner includes a generally cylindrical main magnet assembly (10) that defines a cylinder axis (16). A first set of shims (60) are rigidly positioned inside the magnet assembly (10) at about a first distance (d1) relative to the cylinder axis (16). A second set of shims (62) are rigidly positioned inside the main magnet assembly (10) at about a second distance (d2) relative to the cylinder axis (16). The second distance (d2) is different from the first distance (d1). A generally cylindrical radio frequency coil (26) is arranged inside the main magnet assembly (10) at about a third distance (d3) relative to the cylinder axis (16). A plurality of gradient coils (20) are arranged inside the main magnet assembly (10) at about a fourth distance (d4) relative to the cylinder axis (16).
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: February 24, 2009
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: William H. Amor, Dennis K. Everett, Jerome S. Alden, Robert G. Henderson, Terrence M. Doyle, Ronald B. Sharpless, Gerardus B. J. Mulder, Gerardus N. Peeren
  • Patent number: 7010081
    Abstract: In a diagnostic system, having a rotating gantry (24) and a stationary gantry (22), a bearing race (50) rotates with surface portions having varying linear velocities in accordance with distance from an axis (A) of rotation. Tapered roller bearings (46) interface the bearing race (50) and are conically shaped to velocity match the variable linear surface velocity race (50). The race (50) preferably includes two faces, which provide both axial and radial supporting surfaces for the bearings (46) to interface. The bearings (46) are disposed about the race (50) in pairs. A drive motor (52) is connected to one of the bearings (46) to rotate the gantry (24).
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: March 7, 2006
    Assignee: Koninklijke Philips Electroncis N.V.
    Inventors: William C. Brunnett, Ronald B. Sharpless
  • Publication number: 20040062343
    Abstract: In a diagnostic system, having a rotating gantry (24) and a stationary gantry (22), a bearing race (50) rotates with surface portions having varying linear velocities in accordance with distance from an axis (A) of rotation. Tapered roller bearings (46) interface the bearing race (50) and are conically shaped to velocity match the variable linear surface velocity race (50). The race (50) preferably includes two faces, which provide both axial and radial supporting surfaces for the bearings (46) to interface. The bearings (46) are disposed about the race (50) in pairs. A drive motor (52) is connected to one of the bearings (46) to rotate the gantry (24).
    Type: Application
    Filed: September 26, 2002
    Publication date: April 1, 2004
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: William C. Brunnett, Ronald B. Sharpless
  • Patent number: 6035228
    Abstract: An imaging apparatus (18) includes a frameless stereotactic arm apparatus (30) including a first base portion (42) mounted in a fixed relationship to the imaging device. A second free end (40) of the arm assembly is adapted to move into varied positions near a specimen disposed on the imaging apparatus. At least one pivot joint (44, 48, 52, 56, 60) is provided between the first base portion and the free end of the arm for permitting selective relevant movement between the arm members. Electro-mechanical and electro-magnetic brake devices are provided at respective joints to selectively lock the free end of the arm assembly to the base portion. The brakes are responsive to a brake command signal (210) generated by the imaging device. A low pass filter (240) conditions the brake command signal to substantially eliminate high frequency electromagnetic switching noise in the stereotactic arm.
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: March 7, 2000
    Assignee: Picker International, Inc.
    Inventors: Jeffrey H. Yanof, Ronald B. Sharpless, David Jeri, Christopher Bauer, Daniel S. Furst