Patents by Inventor Ronald C. Eddington, Jr.
Ronald C. Eddington, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240407700Abstract: A handheld device for sonifying electrical signals obtained from a subject is provided. The device can utilize at least one of several operations including (but not limited) digitizing signals from electrodes, adjusting the signals based on accelerometer input, filtering the signals, conditioning the signals according to conditioning parameters, modulating the signal according to sound synthesis parameters, and generating sound from the representations of the signals to accomplish sonification. The device can include an analog-to-digital (A/D) converter to digitize the one or more electrical signals and a processor that receives the one or more digitized electrical signals and produces a representation of an acoustic signal. The device further includes a speaker system that sonifies the representation of the acoustic signal.Type: ApplicationFiled: January 18, 2024Publication date: December 12, 2024Inventors: Josef Parvizi, Christopher D. Chafe, Xinghuan Chao, Ronald C. Eddington, JR.
-
Patent number: 11471088Abstract: A handheld device for sonifying electrical signals obtained from a subject is provided. The device can utilize at least one of several operations including (but not limited) digitizing signals from electrodes, adjusting the signals based on accelerometer input, filtering the signals, conditioning the signals according to conditioning parameters, modulating the signal according to sound synthesis parameters, and generating sound from the representations of the signals to accomplish sonification. The device can include an analog-to-digital (A/D) converter to digitize the one or more electrical signals and a processor that receives the one or more digitized electrical signals and produces a representation of an acoustic signal. The device further includes a speaker system that sonifies the representation of the acoustic signal.Type: GrantFiled: May 19, 2016Date of Patent: October 18, 2022Assignees: The Board of Trustees of the Leland Stanford Junior University, CeribellInventors: Josef Parvizi, Christopher D. Chafe, Xingjuan Chao, Ronald C. Eddington, Jr.
-
Publication number: 20200138320Abstract: A handheld device for sonifying electrical signals obtained from a subject is provided. The device can utilize at least one of several operations including (but not limited) digitizing signals from electrodes, adjusting the signals based on accelerometer input, filtering the signals, conditioning the signals according to conditioning parameters, modulating the signal according to sound synthesis parameters, and generating sound from the representations of the signals to accomplish sonification. The device can include an analog-to-digital (A/D) converter to digitize the one or more electrical signals and a processor that receives the one or more digitized electrical signals and produces a representation of an acoustic signal. The device further includes a speaker system that sonifies the representation of the acoustic signal.Type: ApplicationFiled: December 2, 2019Publication date: May 7, 2020Inventors: Josef Parvizi, Christopher D. Chafe, Xinghuan Chao, Ronald C. Eddington, JR.
-
Patent number: 10204638Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.Type: GrantFiled: August 6, 2018Date of Patent: February 12, 2019Assignee: AAWARE, Inc.Inventor: Ronald C. Eddington, Jr.
-
Publication number: 20180342259Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.Type: ApplicationFiled: August 6, 2018Publication date: November 29, 2018Applicant: Aaware, Inc.Inventor: Ronald C. Eddington, Jr.
-
Patent number: 10049685Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.Type: GrantFiled: July 12, 2017Date of Patent: August 14, 2018Assignee: AAWARE, Inc.Inventor: Ronald C. Eddington, Jr.
-
Publication number: 20170309292Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.Type: ApplicationFiled: July 12, 2017Publication date: October 26, 2017Applicant: Aaware Inc.Inventor: Ronald C. Eddington, JR.
-
Patent number: 9721583Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.Type: GrantFiled: May 27, 2016Date of Patent: August 1, 2017Assignee: AAWTEND INC.Inventor: Ronald C. Eddington, Jr.
-
Publication number: 20160275963Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.Type: ApplicationFiled: May 27, 2016Publication date: September 22, 2016Inventor: Ronald C. Eddington, JR.
-
Patent number: 9443529Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.Type: GrantFiled: March 12, 2014Date of Patent: September 13, 2016Assignee: Aawtend, Inc.Inventor: Ronald C. Eddington, Jr.
-
Publication number: 20140278445Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.Type: ApplicationFiled: March 12, 2014Publication date: September 18, 2014Applicant: AAWTEND INC.Inventor: Ronald C. Eddington, Jr.