Patents by Inventor Ronald C. Eddington, Jr.

Ronald C. Eddington, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240407700
    Abstract: A handheld device for sonifying electrical signals obtained from a subject is provided. The device can utilize at least one of several operations including (but not limited) digitizing signals from electrodes, adjusting the signals based on accelerometer input, filtering the signals, conditioning the signals according to conditioning parameters, modulating the signal according to sound synthesis parameters, and generating sound from the representations of the signals to accomplish sonification. The device can include an analog-to-digital (A/D) converter to digitize the one or more electrical signals and a processor that receives the one or more digitized electrical signals and produces a representation of an acoustic signal. The device further includes a speaker system that sonifies the representation of the acoustic signal.
    Type: Application
    Filed: January 18, 2024
    Publication date: December 12, 2024
    Inventors: Josef Parvizi, Christopher D. Chafe, Xinghuan Chao, Ronald C. Eddington, JR.
  • Patent number: 11471088
    Abstract: A handheld device for sonifying electrical signals obtained from a subject is provided. The device can utilize at least one of several operations including (but not limited) digitizing signals from electrodes, adjusting the signals based on accelerometer input, filtering the signals, conditioning the signals according to conditioning parameters, modulating the signal according to sound synthesis parameters, and generating sound from the representations of the signals to accomplish sonification. The device can include an analog-to-digital (A/D) converter to digitize the one or more electrical signals and a processor that receives the one or more digitized electrical signals and produces a representation of an acoustic signal. The device further includes a speaker system that sonifies the representation of the acoustic signal.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: October 18, 2022
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Ceribell
    Inventors: Josef Parvizi, Christopher D. Chafe, Xingjuan Chao, Ronald C. Eddington, Jr.
  • Publication number: 20200138320
    Abstract: A handheld device for sonifying electrical signals obtained from a subject is provided. The device can utilize at least one of several operations including (but not limited) digitizing signals from electrodes, adjusting the signals based on accelerometer input, filtering the signals, conditioning the signals according to conditioning parameters, modulating the signal according to sound synthesis parameters, and generating sound from the representations of the signals to accomplish sonification. The device can include an analog-to-digital (A/D) converter to digitize the one or more electrical signals and a processor that receives the one or more digitized electrical signals and produces a representation of an acoustic signal. The device further includes a speaker system that sonifies the representation of the acoustic signal.
    Type: Application
    Filed: December 2, 2019
    Publication date: May 7, 2020
    Inventors: Josef Parvizi, Christopher D. Chafe, Xinghuan Chao, Ronald C. Eddington, JR.
  • Patent number: 10204638
    Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: February 12, 2019
    Assignee: AAWARE, Inc.
    Inventor: Ronald C. Eddington, Jr.
  • Publication number: 20180342259
    Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
    Type: Application
    Filed: August 6, 2018
    Publication date: November 29, 2018
    Applicant: Aaware, Inc.
    Inventor: Ronald C. Eddington, Jr.
  • Patent number: 10049685
    Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: August 14, 2018
    Assignee: AAWARE, Inc.
    Inventor: Ronald C. Eddington, Jr.
  • Publication number: 20170309292
    Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
    Type: Application
    Filed: July 12, 2017
    Publication date: October 26, 2017
    Applicant: Aaware Inc.
    Inventor: Ronald C. Eddington, JR.
  • Patent number: 9721583
    Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: August 1, 2017
    Assignee: AAWTEND INC.
    Inventor: Ronald C. Eddington, Jr.
  • Publication number: 20160275963
    Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Inventor: Ronald C. Eddington, JR.
  • Patent number: 9443529
    Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: September 13, 2016
    Assignee: Aawtend, Inc.
    Inventor: Ronald C. Eddington, Jr.
  • Publication number: 20140278445
    Abstract: An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: AAWTEND INC.
    Inventor: Ronald C. Eddington, Jr.