Patents by Inventor Ronald D. Schrimpf

Ronald D. Schrimpf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11774494
    Abstract: Systems and methods are provided for testing a threshold energy required to cause a latchup on an electronic component. An exemplary method includes applying a series of laser pulses to a testing object with a pulsed laser unit. The testing object is connected to a testing circuit which can measure the energy of each of the series of laser pulses, and detect whether a pulse of the series of laser pulses resulted in a latchup on the testing object. Upon detecting the pulse, the method provides for logging the energy of the pulse using a recording unit and logging the latchup status of the test device. If a latchup is detected, the testing circuit automatically mitigates the latchup event.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: October 3, 2023
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Andrew L. Sternberg, Ronald D. Schrimpf, Robert A. Reed
  • Publication number: 20220390511
    Abstract: Systems and methods are provided for testing a threshold energy required to cause a latchup on an electronic component. An exemplary method includes applying a series of laser pulses to a testing object with a pulsed laser unit. The testing object is connected to a testing circuit which can measure the energy of each of the series of laser pulses, and detect whether a pulse of the series of laser pulses resulted in a latchup on the testing object. Upon detecting the pulse, the method provides for logging the energy of the pulse using a recording unit and logging the latchup status of the test device. If a latchup is detected, the testing circuit automatically mitigates the latchup event.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 8, 2022
    Inventors: Andrew L. STERNBERG, Ronald D. SCHRIMPF, Robert A. REED
  • Patent number: 11435399
    Abstract: Systems and methods are provided for testing a threshold energy required to cause a latchup on an electronic component. An exemplary method includes applying a series of laser pulses to a testing object with a pulsed laser unit. The testing object is connected to a testing circuit which can measure the energy of each of the series of laser pulses, and detect whether a pulse of the series of laser pulses resulted in a latchup on the testing object. Upon detecting the pulse, the method provides for logging the energy of the pulse using a recording unit and logging the latchup status of the test device. If a latchup is detected, the testing circuit automatically mitigates the latchup event.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: September 6, 2022
    Assignee: Vanderbilt University
    Inventors: Andrew L. Sternberg, Ronald D. Schrimpf, Robert A. Reed
  • Publication number: 20190391203
    Abstract: Systems and methods are provided for testing a threshold energy required to cause a latchup on an electronic component. An exemplary method includes applying a series of laser pulses to a testing object with a pulsed laser unit. The testing object is connected to a testing circuit which can measure the energy of each of the series of laser pulses, and detect whether a pulse of the series of laser pulses resulted in a latchup on the testing object. Upon detecting the pulse, the method provides for logging the energy of the pulse using a recording unit and logging the latchup status of the test device. If a latchup is detected, the testing circuit automatically mitigates the latchup event.
    Type: Application
    Filed: February 8, 2018
    Publication date: December 26, 2019
    Inventors: Andrew L. STERNBERG, Ronald D. SCHRIMPF, Robert A. REED
  • Patent number: 5937318
    Abstract: A monocrystalline monolith contains a 3-D array of interconnected lattice-matched devices (which may be of one kind exclusively, or that kind in combination with one or more other kinds) performing digital, analog, image-processing, or neural-network functions, singly or in combination. Localized inclusions of lattice-matched metal and (or) insulator can exist in the monolith, but monolith-wide layers of insulator are avoided. The devices may be self-isolated, junction-isolated, or insulator-isolated, and may include but not be limited to MOSFETs, BJTs, JFETs, MFETs, CCDs, resistors, and capacitors. The monolith is fabricated in a single apparatus using a process such as MBE or sputter epitaxy executed in a continuous or quasicontinuous manner under automatic control, and supplanting hundreds of discrete steps with handling and storage steps interpolated.
    Type: Grant
    Filed: May 24, 1991
    Date of Patent: August 10, 1999
    Inventors: Raymond M. Warner, Jr., Ronald D. Schrimpf, Alfons Tuszynski
  • Patent number: 5840589
    Abstract: A method is described for growing a single crystal having three-dimensional (3-D) doping patterns created within it during growth while maintaining a plane growth surface, creating junction-isolated devices and interconnections, forming a 3-D integrated circuit (IC). The crystal is grown as a large number of lightly-doped layers in a single-pumpdown procedure using sputter epitaxy, which offers growth rates for good-quality silicon of at least 0.1 micrometer per minute. The process experiences a stable environment with temperature remaining around 400 C and pressure near 1 millitorr, and the process is "quasicontinuous" in that once each layer is in place, its surface will experience a short series of further steps that create a 2-D doping pattern extending through the layer. It is the merging of many such successive 2-D patterns that creates the desired 3-D doping pattern within the finished silicon crystal.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: November 24, 1998
    Inventors: Raymond M. Warner, Jr., Ronald D. Schrimpf
  • Patent number: 5557195
    Abstract: A system evaluates occurrences of low level electrostatic discharge events in a manufacturing or processing environment or the like by encapsulating each of a plurality of a MOSFETs in a corresponding package having conductive first and second groups of leads coupled to the gate and source and/or drain electrodes of the MOSFET, respectively. The encapsulated MOSFET then is moved through the environment, wherein an electrostatic discharge causes current to flow into the first external electrode, stressing the gate oxide of the MOSFET and producing a permanent low resistance condition therein. The encapsulated MOSFET then is removed from the environment and tested by measuring an electrical parameter indicative of the low resistance condition between the first and second electrodes of the MOSFET. A statistical analysis then is performed on the data obtained by testing all of the MOSFETs to determine how to reduce or avoid ESD in the environment.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: September 17, 1996
    Assignee: QRP, Inc.
    Inventors: Ronald D. Schrimpf, Sungchul Lee
  • Patent number: 5376879
    Abstract: A system evaluates occurrences of low level electrostatic discharge events in a manufacturing or processing environment or the like by encapsulating each of a plurality of a MOSFETs in a corresponding package having conductive first and second groups of leads coupled to the gate and source and/or drain electrodes of the MOSFET, respectively. The encapsulated MOSFET then is moved through the environment, wherein an electrostatic discharge causes current to flow into the first external electrode, stressing the gate oxide of the MOSFET and producing a permanent low resistance condition therein. The encapsulated MOSFET then is removed from the environment and tested by measuring an electrical parameter indicative of the low resistance condition between the first and second electrodes of the MOSFET. A statistical analysis then is performed on the data obtained by testing all of the MOSFETs to determine how to reduce or avoid ESD in the environment.
    Type: Grant
    Filed: November 3, 1992
    Date of Patent: December 27, 1994
    Assignee: QRP, Incorporated
    Inventors: Ronald D. Schrimpf, Sungchul Lee
  • Patent number: 5089862
    Abstract: A monocrystalline monolith contains a 3-D array of interconnected lattice-matched devices (which may be of one kind exclusively, or that kind in combination with one or more other kinds) performing digital, analog, image-processing, or neural-network functions, singly or in combination. Localized inclusions of lattice-matched metal and (or) insulator can exist in the monolith, but monolith-wide layers of insulator are avoided. The devices may be self-isolated, junction-isolated, or insulator-isolated, and may include but not be limited to MOSFETs, BJTs, JFETs, MFETs, CCDs, resistors, and capacitors. The monolith is fabricated in a single apparatus using a process such as MBE or sputter epitaxy executed in a continuous or quasicontinuous manner under automatic control, and supplanting hundreds of discrete steps with handling and storage steps interpolated.
    Type: Grant
    Filed: November 30, 1989
    Date of Patent: February 18, 1992
    Inventors: Raymond M. Warner, Jr., Ronald D. Schrimpf, Alfons Tuszynski
  • Patent number: 4885615
    Abstract: A single-crystal monolith containing a 3-D doping pattern forming varied devices and circuits that are junction-isolated. The semiconductor monolith includes interconnecting signal paths and power buses, also junction-isolated, usually with N+ regions within P matrix regions, and tunnel junctions, N+ - P+ junctions, as ohmic contacts from N-type to P-type regions. An isolating box incorporates an orthogonal isolator. The 3-D structure places layers of critical profile normal to the growth axis. The orthogonal isolator can include floating elements. The 3-D semiconductor monolith can be manufactured through continuous or quasicontinuous processing in a closed system, such as through MBE or sputter epitaxy. Also, a thin layer of silicide can be provided as an ohmic contact and/or a thick layer of silicide can be provided as a conductor thereby providing monocrystalline 3-D devices or integrated circuits. Finally, an insulator can be provided about an entire device for isolation.
    Type: Grant
    Filed: May 12, 1986
    Date of Patent: December 5, 1989
    Assignee: Regents of the University of Minnesota
    Inventors: Raymond M. Warner, Jr., Ronald D. Schrimpf, Alfons Tuszynski
  • Patent number: 4794442
    Abstract: A single-crystal monolith containing a 3-D doping pattern forming varied devices and circuits that are junction-isolated. The semiconductor monolith includes interconnecting signal paths and power buses, also junction-isolated, usually with N+ regions within P matrix regions, and tunnel junctions, N+-P+ junctions, as ohmic contacts from N-type to P-type regions. An isolating box incorporates an orthogonal isolator. The 3-D structure places layers of critical profile normal to the growth axis. The orthogonal isolator can include floating elements. The 3-D semiconductor monolith can be manufactured through continuous or quasicontinuous processing in a closed system, such as through MBE or sputter epitaxy.
    Type: Grant
    Filed: November 19, 1985
    Date of Patent: December 27, 1988
    Assignee: Reagents of the University of Minnesota
    Inventors: Raymond M. Warner, Jr., Ronald D. Schrimpf, Alfons Tuszynski