Patents by Inventor Ronald D. Watkins

Ronald D. Watkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220314010
    Abstract: A magnetic-resonance-imaging-compatible (MRI-compatible) cardiac defibrillator includes: a defibrillator generator; first and second electric wires, each being electrically connected to said defibrillator generator; first and second defibrillation pads, each being electrically connected to a respective one of said first and second electric wires; and a low pass filter electrically connected between said defibrillator generator and said first and second electric wires to prevent a noise in an MRI image caused by a radiofrequency interference from the defibrillator as well as protect a patient and the defibrillator from MRI radiofrequency imaging signals, wherein said low pass filter has a cutoff frequency set such that differential mode noise at an MRI Larmor frequency is in an attenuated band while a system-test signal by said defibrillator generator is in a pass band of said low pass filter.
    Type: Application
    Filed: November 15, 2021
    Publication date: October 6, 2022
    Applicant: The Johns Hopkins University
    Inventors: Henry Halperin, Ehud J. Schmidt, Ronald D. Watkins, Harikrishna Tandri, David Hunter, Leslie Tung, Ronald D. Berger
  • Patent number: 11185707
    Abstract: A magnetic-resonance-imaging-compatible (MRI-compatible) cardiac defibrillator includes: a defibrillator generator; first and second electric wires, each being electrically connected to said defibrillator generator; first and second defibrillation pads, each being electrically connected to a respective one of said first and second electric wires; and a low pass filter electrically connected between said defibrillator generator and said first and second electric wires to prevent a noise in an MRI image caused by a radiofrequency interference from the defibrillator as well as protect a patient and the defibrillator from MRI radiofrequency imaging signals, wherein said low pass filter has a cutoff frequency set such that differential mode noise at an MRI Larmor frequency is in an attenuated band while a system-test signal by said defibrillator generator is in a pass band of said low pass filter.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: November 30, 2021
    Assignee: The Johns Hopkins University
    Inventors: Henry Halperin, Ehud J. Schmidt, Ronald D. Watkins, Harikrishna Tandri, David Hunter, Leslie Tung, Ronald D. Berger
  • Publication number: 20210011099
    Abstract: An embodiment in accordance with the present invention provides a catheter solution that would maintain MRI-compatible metallic braiding or metallic covering on a surface of the catheter, and that also prevents cables disposed in an interior lumen of the catheter from effectively propagating currents induced from external signal transmissions, which could cause a rise in temperature of the cables themselves and of tissues surrounding the catheter. The present invention uses metals which are non-ferromagnetic and not highly paramagnetic, so they do not cause large susceptibility artifacts in the MRI field. The construction of the braid prevents most of the RF fields from penetrating into the anterior of the catheter. Therefore, there is no need or a reduced need to add heat amelioration components to each electrical cable inside the catheter.
    Type: Application
    Filed: August 21, 2018
    Publication date: January 14, 2021
    Inventors: Ehud J. Schmidt, Ronald D. Watkins, Henry R. Halperin
  • Patent number: 10677867
    Abstract: An apparatus and method for an electrocardiogram (ECG) cable suitable for use inside a Magnetic Resonance (MR) scanner during a Magnetic Resonance Imaging (MRI) operation. In particular, the present invention relates to a patient safe (MRI-conditional) 12-lead ECG cable capable of use inside an MR scanner during an MRI scan. The ECG cable does not heat up to a degree that would burn a patient undergoing an MRI scan, but also enables the conventional 12-lead ECG electrode placement required for diagnostic monitoring of the patient. Specifically, the ECG cable electrodes can be placed on a patient in the traditional configuration as 12-lead ECG cable designed for use outside of an MR scanner and take diagnostic level readings, during operation of an MR device or system. Additionally, the cable provides a continuous shield which maintains zero emissions while satisfying defibrillation requirements.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 9, 2020
    Assignee: MIRTLE MEDICAL, LLC
    Inventors: Jay M. Ward, Bill Bartula, James K. Robertson, Ronald D. Watkins, Ehud J. Schmidt
  • Publication number: 20200086130
    Abstract: A magnetic-resonance-imaging-compatible (MRI-compatible) cardiac defibrillator includes: a defibrillator generator; first and second electric wires, each being electrically connected to said defibrillator generator; first and second defibrillation pads, each being electrically connected to a respective one of said first and second electric wires; and a low pass filter electrically connected between said defibrillator generator and said first and second electric wires to prevent a noise in an MRI image caused by a radiofrequency interference from the defibrillator as well as protect a patient and the defibrillator from MRI radiofrequency imaging signals, wherein said low pass filter has a cutoff frequency set such that differential mode noise at an MRI Larmor frequency is in an attenuated band while a system-test signal by said defibrillator generator is in a pass band of said low pass filter.
    Type: Application
    Filed: December 8, 2017
    Publication date: March 19, 2020
    Applicant: The Johns Hopkins University
    Inventors: Henry Halperin, Ehud J. Schmidt, Ronald D. Watkins, Harikrishna Tandri, David Hunter, Leslie Tung, Ronald D. Berger
  • Patent number: 10591570
    Abstract: Wireless markers having predetermined relative positions with respect to each other are employed for motion tracking and/or correction in magnetic resonance (MR) imaging. The markers are inductively coupled to the MR receive coil(s). The correspondence between marker signals and markers can be determined by using knowledge of the marker relative positions in various ways. The marker relative positions can be known a priori, or can be obtained from a preliminary scan. This approach is applicable for imaging (both prospective and retrospective motion correction), spectroscopy, and/or intervention.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 17, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Melvyn B. Ooi, Julian Maclaren, Murat Aksoy, Roland Bammer, Ronald D. Watkins
  • Publication number: 20170067976
    Abstract: An apparatus and method for an electrocardiogram (ECG) cable suitable for use inside a Magnetic Resonance (MR) scanner during a Magnetic Resonance Imaging (MRI) operation. In particular, the present invention relates to a patient safe (MRI-conditional) 12-lead ECG cable capable of use inside an MR scanner during an MRI scan. The ECG cable does not heat up to a degree that would burn a patient undergoing an MRI scan, but also enables the conventional 12-lead ECG electrode placement required for diagnostic monitoring of the patient. Specifically, the ECG cable electrodes can be placed on a patient in the traditional configuration as 12-lead ECG cable designed for use outside of an MR scanner and take diagnostic level readings, during operation of an MR device or system. Additionally, the cable provides a continuous shield which maintains zero emissions while satisfying defibrillation requirements.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 9, 2017
    Inventors: Jay M. Ward, Bill Bartula, James K. Robertson, Ronald D. Watkins, Ehud J. Schmidt
  • Publication number: 20140171784
    Abstract: Wireless markers having predetermined relative positions with respect to each other are employed for motion tracking and/or correction in magnetic resonance (MR) imaging. The markers are inductively coupled to the MR receive coil(s). The correspondence between marker signals and markers can be determined by using knowledge of the marker relative positions in various ways. The marker relative positions can be known a priori, or can be obtained from a preliminary scan. This approach is applicable for imaging (both prospective and retrospective motion correction), spectroscopy, and/or intervention.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 19, 2014
    Inventors: Melvyn B. Ooi, Julian Maclaren, Murat Aksoy, Roland Bammer, Ronald D. Watkins
  • Patent number: 7592813
    Abstract: A system wirelessly supplies electrical power to an RF coil and an analog-to-digital converter (ADC) for an MRI system. The system supplies power to at least operate the RF coil and ADC without the use of a battery and without use of a wired connection external to the bore of the magnet.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 22, 2009
    Assignee: General Electric Company
    Inventors: Eddy Benjemin Boskamp, Ronald D. Watkins, Glen P. Koste
  • Patent number: 7309989
    Abstract: A system wirelessly supplies electrical power to an RF coil and an analog-to-digital converter (ADC) for an MRI system. The system supplies power to at least operate the RF coil and ADC without the use of a battery and without use of a wired connection external to the bore of the magnet.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: December 18, 2007
    Assignee: General Electric Company
    Inventors: Eddy B. Boskamp, Ronald D. Watkins, Glen P. Koste
  • Patent number: 6618608
    Abstract: A method for magnetic resonance imaging includes applying a first two echo gradient echo sequence to a tissue region, the first two echo sequence generating a first echo and a subsequent second echo. A second two echo gradient echo sequence is applied after heating the tissue region, the second two echo sequence generating a third echo and a subsequent fourth echo. A magnitude difference between the third echo and the first echo is measured and correlated to a temperature shift for fat tissue, and a phase difference between the fourth echo and the second echo is measured and correlated to a temperature shift for water-based tissue. A thermal image is generated of the tissue region based upon the temperature shift for both fat and water-based tissue.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: September 9, 2003
    Assignee: Txsonics, Ltd.
    Inventors: Ronald D. Watkins, Harvey E. Cline
  • Patent number: 5545999
    Abstract: A circuit for amplifying signals received by the receive coil of a magnetic resonance (MR) system includes a preamplifier employing an active circuit device, such as a GaAs-MESFET or HEMT. The preamplifier is located proximate to the receive coil in order to maintain as high a signal-to-noise ratio as possible for the preamplifier output signals. A capacitance is coupled to the receive coil to form an input impedance matching network for the input of the preamplifier. The preamplifier output is coupled through a fiber optic cable to remotely located MR signal processing electronics, which further processes signals received by the MR receive coil and amplified by the preamplifier.
    Type: Grant
    Filed: March 21, 1995
    Date of Patent: August 13, 1996
    Assignee: General Electric Company
    Inventors: Otward M. Mueller, Christopher P. Yakymyshyn, Peter B. Roemer, Ronald D. Watkins
  • Patent number: 5526814
    Abstract: An automatically positioned focussed energy transducer system facilitates medical procedures by allowing a physician to interactively view the position the focal point of a focussed energy transducer superimposed upon a medical image and computer generated model of internal structures of a patient. A tracking device tracks the position and orientation of the ultrasound transducer. A medical imaging system creates an image of internal structures of the patient near the location of the energy transducer. A general purpose computer either receives a model of internal structures constructed in advance, or employs a medical imaging device to create the model. The general purpose computer displays selected surfaces of the model in an orientation and view which coincides with the medical image acquired.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: June 18, 1996
    Assignee: General Electric Company
    Inventors: Harvey E. Cline, Ronald D. Watkins
  • Patent number: 5368032
    Abstract: A manually positioned focussed energy transducer system facilitates medical procedures by allowing a physician to manually position the focal point of the focussed energy transducer to a selected tissue. The focal point of the focussed energy transducer is the location which tissue is destroyed when the energy transducer is activated. A tracking device tracks the position and orientation of the ultrasound transducer. An MR imaging system creates an image of internal structures of the patient near the location of the energy transducer. A superposition device receives the position and orientation of the ultrasound transducer from the tracking device and superimposes a symbol on the image corresponding to the position of the energy transducer relative to the patient. This allows the physician to adjust the position of the energy transducer to the appropriate location without the need for energizing the energy transducer.
    Type: Grant
    Filed: November 9, 1993
    Date of Patent: November 29, 1994
    Assignee: General Electric Company
    Inventors: Harvey E. Cline, Ronald D. Watkins
  • Patent number: 5275165
    Abstract: A magnetic resonance (MR) surgery system facilitates surgery with a focussed ultrasound transducer that selectively destroys tissue in a region within a subject. The focussed energy transducer dissipates energy at a focal point within the region of tissue to be destroyed. A non-magnetic positioning device having a vertical dimension small enough to fit easily within the bore of an MR magnet moves an energy transducer in a limited vertical space. The positioning device employs a plurality of hydraulic positioners and an inclined plane to position the ultrasound focal point under the control of an operator. An MR imaging system employing a temperature sensitive pulse sequence creates an image of the tissue and the region being heated to allow the operator to adjust the position of the ultrasonic transducer so as to direct ultrasonic energy to the appropriate location.
    Type: Grant
    Filed: November 6, 1992
    Date of Patent: January 4, 1994
    Assignee: General Electric Company
    Inventors: Robert H. Ettinger, Harvey E. Cline, Ronald D. Watkins, Kenneth W. Rohling
  • Patent number: 5247935
    Abstract: A magnetic resonance surgery system facilitates performance of surgery with a focussed ultrasound transducer that selectively destroys tissue in a region within a subject. The focussed ultrasound transducer dissipates ultrasonic energy at a focal point within the region of tissue to be destroyed. A number of hydraulic positioners position the focal point under the control of a surgeon. A magnetic resonance imaging system employing a temperature sensitive pulse sequence creates an image of the tissue and the region being heated to allow the surgeon to adjust the position of the ultrasonic transducer so as to direct ultrasonic energy to the appropriate location.
    Type: Grant
    Filed: March 19, 1992
    Date of Patent: September 28, 1993
    Assignee: General Electric Company
    Inventors: Harvey E. Cline, Robert H. Ettinger, Kenneth W. Rohling, Ronald D. Watkins