Patents by Inventor Ronald Drake

Ronald Drake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220265997
    Abstract: In some examples, a tether head assembly of a delivery system includes an inner retainer and an outer retainer that defines an aperture comprising a receptacle configured to receive an attachment member of a medical device, a passageway, and a groove. The inner retainer is movable within the groove between a second position in which the passageway is dimensioned to receive the attachment member and a first position in which the passageway is dimensioned to prevent passage of the attachment member. In some examples, a tether handle assembly defines a channel, a force transmitter within the channel, a slidable member partially received within a first end of the channel and a button partially received within a second end of the channel. Distally-directed force applied to the button may cause the force transmitter to apply proximally-directed force to the slidable member, moving the slidable member and an attached pull wire proximally.
    Type: Application
    Filed: May 12, 2022
    Publication date: August 25, 2022
    Inventors: Ronald A. Drake, Lester O. Stener, Brian P. Colin
  • Publication number: 20220257283
    Abstract: A catheter for delivery of a leadless pacemaker includes an elongate flexible tubular body with a distal end including a delivery cup configured to releasably retain a pacing capsule of the leadless pacemaker. The delivery cup includes an echogenic structure.
    Type: Application
    Filed: February 4, 2022
    Publication date: August 18, 2022
    Inventors: Elliot C. Schmidt, Ronald A. Drake
  • Publication number: 20220226636
    Abstract: Implantable apparatus includes two or more alignable marker elements, and systems and methods for manufacturing such implantable apparatus, and methods to utilize such implantable apparatus. For example, the implantable apparatus may include a first alignable marker element and a second alignable marker element that may be used to ensure proper alignment with a target site.
    Type: Application
    Filed: January 19, 2022
    Publication date: July 21, 2022
    Inventors: Jay T. Rassat, Varun Bhatia, Kendall Emfield, Ryan Lahm, Alan Cheng, Douglas S. Hine, Kristin M. Johnson, Gregory N. Nesseth, Jonathan E. Baxter, Daniel W. Celotta, Stephen A. Howard, Nathan A. Grenz, Brian P. Colin, Ronald A. Drake, Juan Meng, Hongyang Lu
  • Publication number: 20220184350
    Abstract: The present disclosure is directed to a shuttle apparatus for detachably joining a catheter to a guidewire so that the joined catheter, extending alongside the guidewire, is in sliding engagement with the guidewire without extending around the guidewire. The apparatus comprises a collar member sized for mounting in sliding engagement around a length of the guidewire, the collar member having a longitudinal axis that approximately aligns along the length, when mounted thereabout, the length being defined between a proximal-most point of the guidewire and a distal point of the guidewire, the distal point being offset proximally from a distal-most point of the guidewire. The apparatus further comprises a plug member coupled to the collar member, the plug member having a longitudinal axis, and the plug member being sized to fit within an opening of the catheter for detachable engagement therewith.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 16, 2022
    Inventors: Ronald A. Drake, Matthew D. Bonner, Trent M. Fischer, Carla C. Pfeiffer, Brian P. Colin, Lester O. Stener
  • Patent number: 11357484
    Abstract: An improved assembly for securing an implantable medical device for retrieval from an implant site includes a plurality of snares, wherein distal openings of a first snare carrier lumen and a second snare carrier lumen have a pre-set offset established therebetween. First and second snare shafts, to which first and second snare loops are coupled, respectively, extend within the corresponding snare carrier lumens such that each loop is located in proximity to the corresponding distal opening of the lumen. The pre-set offset allows an operator to simultaneously position the snare loops around the device; and, when the operator retracts the snare shafts to collapse the snare loops until the loops fit snuggly around the device, the pre-set offset can help to align the device for retrieval.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 14, 2022
    Assignee: Medtronic, Inc.
    Inventors: Colin W. Meade, Paula McDonnell, Francis D. McEvoy, Rónán Wood, Kealan E. O'Carroll, Kenneth C. Gardeski, Ronald A. Drake, Kevin R. Seifert, Brian P. Colin, Pierce Vatterott
  • Publication number: 20220162126
    Abstract: Techniques of forming a foamed insulation material from gypsum waste are disclosed herein. One example technique includes mechanically comminuting the gypsum waste from an original size into particles of gypsum at a target size smaller than the original size and mixing the particles of the gypsum with a binder to form a mixture of particles and binder. The binder is configured to bind the particles of gypsum upon hydration. The example technique can further include performing air entrainment on the mixture until a foam is formed from the mixture having the particles of gypsum and binder. The foam has water that causes the binder to bind the particles of gypsum. The example technique can then include removing moisture from the mixture with the formed foam to form a foamed insulation material from the particles of gypsum.
    Type: Application
    Filed: March 20, 2020
    Publication date: May 26, 2022
    Inventors: Taiji Miyasaka, David Ronald Drake
  • Patent number: 11331475
    Abstract: In some examples, a tether head assembly of a delivery system includes an inner retainer and an outer retainer that defines an aperture comprising a receptacle configured to receive an attachment member of a medical device, a passageway, and a groove. The inner retainer is movable within the groove between a second position in which the passageway is dimensioned to receive the attachment member and a first position in which the passageway is dimensioned to prevent passage of the attachment member. In some examples, a tether handle assembly defines a channel, a force transmitter within the channel, a slidable member partially received within a first end of the channel and a button partially received within a second end of the channel. Distally-directed force applied to the button may cause the force transmitter to apply proximally-directed force to the slidable member, moving the slidable member and an attached pull wire proximally.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: May 17, 2022
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Lester O. Stener, Brian P. Colin
  • Publication number: 20220096824
    Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Inventors: Ronald A. Drake, Kenneth C. Gardeski, Carla Pfeiffer, Kevin R. Seifert, Lester O. Stener, Matthew D. Bonner
  • Publication number: 20220061886
    Abstract: Extravascular implant tools that utilize a bore-in mechanism to safely access extravascular locations and implant techniques utilizing these tools are described. The bore-in mechanism may include a handle and a helix extending from the handle. The bore-in mechanism is used, for example, in conjunction with a tunneling tool to traverse the diaphragmatic attachments to access a substernal location. The tunneling tool may be an open channel tunneling tool or a conventional tunneling tool (e.g., metal rod).
    Type: Application
    Filed: August 9, 2021
    Publication date: March 3, 2022
    Inventors: Ronald A. Drake, Kevin R. Seifert, Lester O. Stener, Amy E. Thompson-Nauman
  • Publication number: 20220023621
    Abstract: An implantable medical lead comprising a lead body defining a lumen. The lead body includes one or more tines substantially at a distal end of the lead body. An inner member extending within the lead body lumen is configured to rotate relative to the lead body and configured to cause a rotation of a dilator. The dilator is configured such that the rotation causes or enables a lateral translation of the dilator from a first position proximal to a lead body opening to a second position distal to the lead body opening. The implantable medical lead may include a probe wire configured to slidably translate through an inner lumen of the dilator.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 27, 2022
    Inventors: Ronald A. Drake, Mary M. Morris, McKenna Rose Redmond Del Toro, Megan L. Platner, Kaileigh E. Rock, Brian P. Colin, William Eastman
  • Patent number: 11219760
    Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: January 11, 2022
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Kenneth C. Gardeski, Carla Pfeiffer, Kevin R. Seifert, Lester O. Stener, Matthew D. Bonner
  • Patent number: 11207504
    Abstract: The present disclosure is directed to a shuttle apparatus for detachably joining a catheter to a guidewire so that the joined catheter, extending alongside the guidewire, is in sliding engagement with the guidewire without extending around the guidewire. The apparatus comprises a collar member sized for mounting in sliding engagement around a length of the guidewire, the collar member having a longitudinal axis that approximately aligns along the length, when mounted thereabout, the length being defined between a proximal-most point of the guidewire and a distal point of the guidewire, the distal point being offset proximally from a distal-most point of the guidewire. The apparatus further comprises a plug member coupled to the collar member, the plug member having a longitudinal axis, and the plug member being sized to fit within an opening of the catheter for detachable engagement therewith.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: December 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Matthew D. Bonner, Trent M. Fischer, Carla Pfeiffer, Brian P. Colin, Lester O. Stener
  • Patent number: 11197996
    Abstract: A medical delivery device for delivering a medical device includes a navigable elongated member, a deployment bay, and a compression mechanism. The deployment bay may be configured to house the medical device as the medical device is navigated to the target site. The deployment bay may be at a distal end of the delivery device and may include a distal opening through which the medical device may be deployed. The compression mechanism is configured to longitudinally compress in response to a predetermined force such that the elongated member and deployment bay are relatively closer together along a longitudinal axis of the delivery device.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: December 14, 2021
    Assignee: Medtronic, Inc.
    Inventors: Kenneth C. Gardeski, Ronald A. Drake, Xin Chen, Michael R. Leners, Lonnie D. Ronning, Lester O. Stener, Matthew D. Bonner, Jean M. Carver, Brian P. Colin, Alexander R. Mattson, Kathryn Hilpisch, Vladimir Grubac
  • Publication number: 20210353907
    Abstract: A deflectable shaft catheter may include a handle extending laterally from a hub of the catheter to form an acute angle therewith, wherein the handle contains a wire controller and a guide that rotates in plane with the angle. A spring biased slider of the wire controller, for the aforementioned handle, or an in-line handle sans the guide, may include first and second parts between which a proximal end of the wire extends and bends into a bore formed in the first part. Alternately, the slider includes an elastomeric core sandwiched between first and second parts thereof. The slider may further include a cavity in which a spring member biases the proximal end of the wire toward a distal end of the cavity, but only forces the wire to the cavity distal end, if a predetermined spring force of the member is greater than an opposing force along the wire.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 18, 2021
    Inventors: Zhongping Yang, Ronald A. Drake, Robert Kowal, Megan L. Platner, Lester O. Stener
  • Patent number: 11090081
    Abstract: A detachable handle assembly for a tool, the tool for creating a sub-sternal tunnel in a patient. The handle assembly includes a lock-and-release mechanism by which the tunneling assembly is attached to the handle, the mechanism being operable to detach the handle from the tunneling assembly. The handle assembly also may include a knob that interlocks with the tunneling assembly, the knob being configured for engagement by fingers of an adult hand to apply a force to rotate a boring tip of the tunneling assembly.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 17, 2021
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Lester O. Stener, John A. Lange, Mitchell R. Maciver
  • Patent number: 11083491
    Abstract: Extravascular implant tools that utilize a bore-in mechanism to safely access extravascular locations and implant techniques utilizing these tools are described. The bore-in mechanism may include a handle and a helix extending from the handle. The bore-in mechanism is used, for example, in conjunction with a tunneling tool to traverse the diaphragmatic attachments to access a substernal location. The tunneling tool may be an open channel tunneling tool or a conventional tunneling tool (e.g., metal rod).
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 10, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Ronald A. Drake, Kevin R. Seifert, Lester O. Stener, Amy E. Thompson-Nauman
  • Patent number: 11027124
    Abstract: A tool operable with a catheter in an interventional medical system retrieves a medical device from an implant site, wherein the device includes an attachment feature that forms an annular recess to be engaged by a lasso of the tool for snaring the device, and a distal-most sidewall of the catheter defines a receptacle into which the snared device is retrieved. A guide of the tool includes a sidewall defining a lumen in which the lasso extends for deployment out from a distal opening thereof, to snare and retrieve the implanted device. The sidewall establishes a radial offset between the guide lumen distal opening and the distal-most sidewall of the catheter, when the guide lumen distal opening and a distal opening of the receptacle are located in close proximity to one another, which radial offset is greater than a length of the annular recess formed by the device attachment feature.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: June 8, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Ronald A Drake, Keith D Anderson, Kenneth C Gardeski, Dina L Williams
  • Publication number: 20210146141
    Abstract: In some examples, a medical device system includes an electrode. The medical device system may include impedance measurement circuitry coupled to the electrode, the impedance measurement circuitry may be configured to generate an impedance signal indicating impedance proximate to the electrode. The medical device system may include processing circuitry that may be configured to identify a first component of the impedance signal. The first component of the impedance signal may be correlated to a cardiac event. The processing circuitry may be configured to determine that the cardiac event occurred based on the identification of the first component of the impedance signal.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 20, 2021
    Inventors: Melissa G.T. Christie, Ronald A. Drake, Vladimir P. Nikolski, Bushan K. Purushothaman, Xusheng Zhang
  • Publication number: 20210077022
    Abstract: A medical system is configured to deliver an implantable medical device to a targeted implant site. The system may include a processor configured to receive a cardiac electrical signal and determine a feature of the cardiac electrical signal. The processor may be configured to determine a position of the delivery tool based on at least one feature of the cardiac electrical signal. The processor may detect a deployment position of the delivery tool in response to the cardiac electrical signal feature meeting criteria for detecting the deployment position.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 18, 2021
    Inventors: Yanina GRINBERG, Ronald A. DRAKE, Vincent P. Ganion, Kathryn HILPISCH, Michael L. HUDZIAK, Michael KEMMERER, Alexander R. MATTSON, Pamela K. OMDAHL, Anthony W. SCHROCK, Kristina YATES
  • Publication number: 20210046281
    Abstract: In some examples, an implantable medical device delivery catheter comprises a handle and an elongated member disposed within the handle, the elongated member comprising an elongated member lumen configured to receive an inner tool that is configured to extend through a lumen of the delivery catheter, including the elongated member lumen, and interface with an implantable medical device. The handle further comprises a clamping assembly comprising a button configured to be actuated toward a longitudinal axis of the elongated member in a direction transverse to the longitudinal axis to compress the elongated member against the inner tool to restrain movement of the inner tool through the elongated member lumen.
    Type: Application
    Filed: July 13, 2020
    Publication date: February 18, 2021
    Inventors: Ronald A. Drake, Lester O. Stener