Patents by Inventor Ronald E. Johnson

Ronald E. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7120362
    Abstract: High power repeaters for use in amplifying optical data signals transmitted through undersea fiber optic cables are disclosed. Raman amplification schemes using 100 or more pump lasers are integrated into industry standard sized pressure vessels for amplifying optical data signals transmitted through one or more fiber optic pairs. Other repeater features include high density packaging, efficient power distribution, and component sharing.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: October 10, 2006
    Inventors: Bo Pedersen, Ronald E. Johnson
  • Patent number: 6934469
    Abstract: A collapsed ring fiber optic system includes a service path and a protection path provides at a shallow water portion of the fiber optic system, to deal with any fiber cuts that may occur at the shallow water portion without loss of main trunk bandwidth. The service and protection paths meet at a branch point, which is preferably located at a deep water portion of the fiber optic system. A passive combiner or a 1×2 switch is provided at the branch unit, along with a detector and a processor, to determine whether any signals are being received from the service path, and if not, to reconfigure the system to accept signals from the protection path. At another shallow water portion of the fiber optic system, nearby where a destination is located, the signal provided on the optical path over the deep water portion is split into a service path and a protection path, to provide redundancy to deal with any fiber cuts that may occur.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: August 23, 2005
    Assignee: Dorsal Networks, Inc.
    Inventors: Lee Daniel Feinberg, Bo Pedersen, Ronald Dale Esman, John Hagopian, Cathal Mahon, Brent Ashley Miller, M. Imran Hayee, Ronald E. Johnson, Nandakumar Ramanujam
  • Patent number: 6798801
    Abstract: A laser system includes a series coupled laser diode pair, first and second current regulators, and a power supply. The first current regulator controls current supplied to the laser diode pair. The second current regulator selectively diverts a portion of the supplied current away from a first laser diode of the laser diode pair. The power supply adaptively adjusts a level of a supply voltage applied across the series coupled laser diode pair.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: September 28, 2004
    Assignee: Dorsal Networks, Inc.
    Inventor: Ronald E. Johnson
  • Patent number: 6641877
    Abstract: A method for retarding the deterioration rate of acidic paper is disclosed. The method includes placing an acidic paper article in a polymer film enclosure having a reservoir of deacidifying agent. The deacidifying agent migrates over time to the paper article in an amount sufficient to retard the deterioration rate of the paper. The method can further include placing in the polymer film enclosure a carrier material having a second reservoir of deacidifying agent. An article for retarding the deterioration rate of acidic paper is also disclosed. The article includes a polymer film enclosure having a reservoir of deacidifying agent. The polymer film enclosure is capable of enclosing an acidic paper article. The deacidifying agent is capable of migrating over time to the acidic paper article enclosed therein in an amount sufficient to retard the deterioration rate of the paper. The article can further include a carrier material having a reservoir of deacidifying agent.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: November 4, 2003
    Inventor: Ronald E. Johnson
  • Publication number: 20030185562
    Abstract: A collapsed ring fiber optic system includes a service path and a protection path provides at a shallow water portion of the fiber optic system, to deal with any fiber cuts that may occur at the shallow water portion without loss of main trunk bandwidth. The service and protection paths meet at a branch point, which is preferably located at a deep water portion of the fiber optic system. A passive combiner or a 1×2 switch is provided at the branch unit, along with a detector and a processor, to determine whether any signals are being received from the service path, and if not, to reconfigure the system to accept signals from the protection path. At another shallow water portion of the fiber optic system, nearby where a destination is located, the signal provided on the optical path over the deep water portion is split into a service path and a protection path, to provide redundancy to deal with any fiber cuts that may occur.
    Type: Application
    Filed: March 27, 2003
    Publication date: October 2, 2003
    Applicant: Dorsal Networks, Inc.
    Inventors: Lee Daniel Feinberg, Bo Pedersen, Ronald Dale Esman, John Hagopian, Cathal Mahon, Brent Ashley Miller, M. Imran Hayee, Ronald E. Johnson, Nandakumar Ramanujam
  • Patent number: 6556319
    Abstract: A collapsed ring fiber optic system includes a service path and a protection path provides at a shallow water portion of the fiber optic system, to deal with any fiber cuts that may occur at the shallow water portion without loss of main trunk bandwidth. The service and protection paths meet at a branch point, which is preferably located at a deep water portion of the fiber optic system. A passive combiner or a 1×2 switch is provided at the branch unit, along with a detector and a processor, to determine whether any signals are being received from the service path, and if not, to reconfigure the system to accept signals from the protection path. At another shallow water portion of the fiber optic system, nearby where a destination is located, the signal provided on the optical path over the deep water portion is split into a service path and a protection path, to provide redundancy to deal with any fiber cuts that may occur.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: April 29, 2003
    Assignee: Dorsal Networks, Inc.
    Inventors: Lee Daniel Feinberg, Bo Pedersen, Ronald Dale Esman, John Hagopian, Cathal Mahon, Brent Ashley Miller, M. Imran Hayee, Ronald E. Johnson, Nandakumar Ramanujam
  • Publication number: 20030072062
    Abstract: High power repeaters for use in amplifying optical data signals transmitted through undersea fiber optic cables are disclosed. Raman amplification schemes using 100 or more pump lasers are integrated into industry standard sized pressure vessels for amplifying optical data signals transmitted through one or more fiber optic pairs. Other repeater features include high density packaging, efficient power distribution, and component sharing.
    Type: Application
    Filed: October 3, 2001
    Publication date: April 17, 2003
    Inventors: Bo Pedersen, Ronald E. Johnson
  • Publication number: 20030063886
    Abstract: A method of controlling a package of optical components includes providing a thermally conductive layer for mounting optical components. A temperature proximate to the optical components is sensed. The optical components are heated or cooled in response to the sensed temperature by activating a temperature alternation device.
    Type: Application
    Filed: October 3, 2001
    Publication date: April 3, 2003
    Inventors: Lowell Seal, Steven Brown, Ramesh Varma, Ronald E. Johnson, Jeffrey Lynch
  • Publication number: 20030063887
    Abstract: An optical package for an optical unit includes at least one optical component, a thermally conductive layer having the at least one optical component mounted thereon, and a temperature alteration device disposed adjacent to the thermally conductive layer. A control circuit controls the temperature alteration device. The control circuit and temperature alteration device include redundant elements.
    Type: Application
    Filed: October 3, 2001
    Publication date: April 3, 2003
    Inventors: Lowell Seal, Steven Brown, Ramesh Varma, Ronald E. Johnson
  • Publication number: 20030063641
    Abstract: A laser system includes a series coupled laser diode pair, first and second current regulators, and a power supply. The first current regulator controls current supplied to the laser diode pair. The second current regulator selectively diverts a portion of the supplied current away from a first laser diode of the laser diode pair. The power supply adaptively adjusts a level of a supply voltage applied across the series coupled laser diode pair.
    Type: Application
    Filed: October 3, 2001
    Publication date: April 3, 2003
    Inventor: Ronald E. Johnson
  • Publication number: 20030030861
    Abstract: Link monitoring architectures and methods that provide high reliability supervisory signaling in optical communication systems are described. Supervisory signals are transmitted via a communications channel, e.g., using overmodulation of an optical data signal envelope, between terminal units and line units in optical communication systems. The line units can be organized in groups of fiber pairs which share pump lasers and control units for handling the supervisory signaling. According to one exemplary embodiment, a line unit assembly includes two fiber pairs which have four control units which redundantly perform operations based upon commands received from the terminal units.
    Type: Application
    Filed: August 13, 2001
    Publication date: February 13, 2003
    Inventors: John Mellert, Ronald E. Johnson, Jeffrey Lynch
  • Publication number: 20030030860
    Abstract: Link monitoring architectures and methods that provide high reliability supervisory signaling in optical communication systems are described. Supervisory signals are transmitted via a communications channel, e.g., using overmodulation of an optical data signal envelope, between terminal units and line units in optical communication systems. The line units can be organized in groups of fiber pairs which share pump lasers and control units for handling the supervisory signaling. According to one exemplary embodiment, a line unit assembly includes two fiber pairs which have four control units which redundantly perform operations based upon commands received from the terminal units.
    Type: Application
    Filed: August 13, 2001
    Publication date: February 13, 2003
    Inventors: John Mellert, Ronald E. Johnson, Jeffrey Lynch
  • Patent number: 6511615
    Abstract: A planar optical device is formed on a substrate. The device comprises an array of waveguide cores which guide optical radiation. A cladding layer is formed contiguously with the array of waveguide cores to confine the optical radiation to the array of waveguide cores. At least one of the array of waveguide cores and cladding layer is an inorganic-organic hybrid material that comprises an extended matrix containing silicon and oxygen atoms with at least a fraction of the silicon atoms being directly bonded to substituted or unsubstituted hydrocarbon moieties. This material can be designed with an index of refraction between 1.4 and 1.55 and can be deposited rapidly to thicknesses of up to 40 microns. In accordance with another embodiment of the invention, a method for forming a planar optical device obviates the need for a lithographic process.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: January 28, 2003
    Assignee: Corning Incorporated
    Inventors: Steven B. Dawes, Ronald E. Johnson, Richard O. Maschmeyer, Robert D. Shoup
  • Publication number: 20020195217
    Abstract: A method for retarding the deterioration rate of acidic paper is disclosed. The method includes placing an acidic paper article in a polymer film enclosure having a reservoir of deacidifying agent. The deacidifying agent migrates over time to the paper article in an amount sufficient to retard the deterioration rate of the paper. The method can further include placing in the polymer film enclosure a carrier material having a second reservoir of deacidifying agent. An article for retarding the deterioration rate of acidic paper is also disclosed. The article includes a polymer film enclosure having a reservoir of deacidifying agent. The polymer film enclosure is capable of enclosing an acidic paper article. The deacidifying agent is capable of migrating over time to the acidic paper article enclosed therein in an amount sufficient to retard the deterioration rate of the paper. The article can further include a carrier material having a reservoir of deacidifying agent.
    Type: Application
    Filed: March 2, 2001
    Publication date: December 26, 2002
    Inventor: Ronald E. Johnson
  • Publication number: 20020167694
    Abstract: A collapsed ring fiber optic system includes a service path and a protection path provides at a shallow water portion of the fiber optic system, to deal with any fiber cuts that may occur at the shallow water portion without loss of main trunk bandwidth. The service and protection paths meet at a branch point, which is preferably located at a deep water portion of the fiber optic system. A passive combiner or a 1×2 switch is provided at the branch unit, along with a detector and a processor, to determine whether any signals are being received from the service path, and if not, to reconfigure the system to accept signals from the protection path. At another shallow water portion of the fiber optic system, nearby where a destination is located, the signal provided on the optical path over the deep water portion is split into a service path and a protection path, to provide redundancy to deal with any fiber cuts that may occur.
    Type: Application
    Filed: May 8, 2001
    Publication date: November 14, 2002
    Inventors: Lee Daniel Feinberg, Bo Pedersen, Ronald Dale Esman, John Hagopian, Cathal Mahon, Brent Ashley Miller, M. Imran Hayee, Ronald E. Johnson, Nandakumar Ramanujam
  • Patent number: 6444076
    Abstract: The present invention relates to a method of adhering an optically transmissive substrate to a compatible substrate such as plastic or glass and the resulting optical elements. A pressure sensitive adhesive layer, which is optically transmissive and is pre-applied to the optically transmissive substrate, eliminates many handling problems associated with liquid adhesive. Particularly preferred optical elements in accordance with the present invention are optical memory products and optical isolators with dichroic polarizers.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: September 3, 2002
    Assignee: Corning Incorporated
    Inventors: Reba S. Herndon, Ronald E. Johnson, Joshua U. Otaigbe, Joy C. Wu
  • Patent number: 6344078
    Abstract: A binder system for use in the formation of ceramic or other powder-formed greenware comprising a binder, a solvent for the binder, a surfactant, and a component that is non-solvent with respect to the binder and solvent. The non-solvent component exhibits a lower viscosity than the solvent when containing the binder and comprises at least a portion of an organic liquid having a 90% recovered distillation temperature of no greater than about 225° C. and more preferably less than 220° C. Also disclosed is a process of forming and shaping plasticized powder mixtures and a process for forming ceramic articles utilizing the binder system.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: February 5, 2002
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Devi Chalasani, Ronald E. Johnson
  • Publication number: 20020013425
    Abstract: The present application describes a method for initial polymerization or gelling a composition of epoxy resin at a temperature of 50° C. or less, over a period of 24 hours or less by the incorporation of a fluorinated carboxylic acid. The compositions used in the present invention can be gelled without the use of heat or light. The fluorinated carboxylic acid includes a carboxylic acid terminated fluoropolyether. The composition includes a cycloaliphatic epoxy resin. The invention further includes objects that comprise a polymerization product of a composition or materials prepared according to the method In addition, the present application describes the use of such materials in optical systems that include a first component, a second component, and the material disposed between the first and second optical components.
    Type: Application
    Filed: March 29, 2001
    Publication date: January 31, 2002
    Inventors: Ronald E. Johnson, Khalil M. Moussa, Paul J. Shustack, Kimberly S. Wayman
  • Patent number: 6272275
    Abstract: A method for fabricating optical devices for transmission and/or manipulation of light includes steps of providing a substrate which defines a reference plane for positioning cladding material and core material, fixing rigid spacers to an upper surface of the substrate, the spacers having upper surfaces which define a second plane spaced above the reference plane, depositing a layer of a formable, curable under-cladding material over the upper surface of the substrate, the upper surface of the rigid spacers providing a guide for precise control of the height of the under-cladding material above the surface of the substrate, curing the under-cladding material under compression to form an under-cladding layer, and depositing a light guide core and over-cladding on the under-cladding. The method is susceptible to mass production and provides more precise control of the position of the light guide core relative to a substrate surface.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: August 7, 2001
    Assignee: Corning Incorporated
    Inventors: Jeffrey E. Cortright, Martha B. Custer, Ronald E. Johnson
  • Patent number: 6152033
    Abstract: A method of printing electrode and electronic circuit patterns. A metal frit containing part is transferred from an intaglio recessed imaging pattern to a suitable substrate. The frit pattern is preferrably cured during deposition to the substrate.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: November 28, 2000
    Assignee: Corning Incorporated
    Inventors: Bernard Eid, Ronald E. Johnson