Patents by Inventor Ronald Eisenhour

Ronald Eisenhour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11322980
    Abstract: In one aspect of the present disclosure, an induction hub is disclosed for use in powering components in a vehicle. The induction hub includes a source coil; first and second receiver coils having first and second conductive portions, respectively; and at least one isolation member that is positioned between the first and second conductive portions. The receiver coils are separated from the source coil such that, upon being energized by a power source, the source coil creates an induced electromagnetic field (EMF) and an electrical current in the receiver coils, which are in electrical communication with at least one component in the vehicle to thereby deliver power from the receiver coils to the at least one component. The at least one isolation member includes a material that is electrically nonconductive and electromagnetically permeable so as to physically and electrically separate the receiver coils without impacting the induced EMF.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: May 3, 2022
    Assignee: Nissan North America, Inc.
    Inventors: Ronald Eisenhour, Balkishan Malay Gupta
  • Publication number: 20200136433
    Abstract: In one aspect of the present disclosure, an induction hub is disclosed for use in powering components in a vehicle. The induction hub includes a source coil; first and second receiver coils having first and second conductive portions, respectively; and at least one isolation member that is positioned between the first and second conductive portions. The receiver coils are separated from the source coil such that, upon being energized by a power source, the source coil creates an induced electromagnetic field (EMF) and an electrical current in the receiver coils, which are in electrical communication with at least one component in the vehicle to thereby deliver power from the receiver coils to the at least one component. The at least one isolation member includes a material that is electrically nonconductive and electromagnetically permeable so as to physically and electrically separate the receiver coils without impacting the induced EMF.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 30, 2020
    Inventors: Ronald Eisenhour, Balkishan Malay Gupta
  • Patent number: 10259288
    Abstract: A power recovery system for a heating, ventilation and air conditioning system of a vehicle includes an air handling system flow path, and a heater core disposed in a first flow path in fluid communication with the air handling system flow path. A heat sink is disposed in a second flow path in fluid communication with the air handling system flow path. A cooling circuit supplies a cooling fluid to the heat sink through the second flow path. A thermoelectric device has a first surface in thermal contact with the heater core and a second surface in thermal contact with the heat sink. The thermoelectric device converts a temperature difference between the first and second surfaces to electrical power.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: April 16, 2019
    Assignee: Nissan North America, Inc.
    Inventor: Ronald Eisenhour
  • Patent number: 9452661
    Abstract: A vehicle air conditioning system includes a compressor configured to compress refrigerant, a condenser, an evaporator, a temperature sensor and a controller. The condenser receives the refrigerant from the compressor and the evaporator receives the refrigerant from the condenser. The temperature sensor is positioned proximate the evaporator to measure a temperature of air passing through the evaporator prior to entering a vehicle passenger compartment. The controller is operatively coupled to the compressor to cycle the compressor on and off based upon the temperature measured by the temperature sensor and correlation data stored in the controller that correlates temperatures at the evaporator to estimated moisture densities at the evaporator to maintain the moisture density of the air in the vehicle passenger compartment below a predetermined moisture density threshold.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: September 27, 2016
    Assignee: Nissan North America, Inc.
    Inventor: Ronald Eisenhour
  • Publication number: 20160096411
    Abstract: A power recovery system for a heating, ventilation and air conditioning system of a vehicle includes an air handling system flow path, and a heater core disposed in a first flow path in fluid communication with the air handling system flow path. A heat sink is disposed in a second flow path in fluid communication with the air handling system flow path. A cooling circuit supplies a cooling fluid to the heat sink through the second flow path. A thermoelectric device has a first surface in thermal contact with the heater core and a second surface in thermal contact with the heat sink. The thermoelectric device converts a temperature difference between the first and second surfaces to electrical power.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 7, 2016
    Inventor: Ronald EISENHOUR
  • Patent number: 9027358
    Abstract: A vehicle heat pump system includes a compressor, a first valve coupled to an outlet of the compressor, a cooling circuit between the first valve and the inlet of the compressor, a heating circuit between the first valve and the inlet of the compressor and a controller. The heating circuit includes a heating circuit evaporator and a second valve between the heating circuit evaporator and the inlet of the compressor. The controller is configured to operate the first valve to switch between a cooling mode and a heating mode, cycle the second valve opened and closed in the heating mode, such that when closed, the compressor draws refrigerant out of the cooling circuit and refrigerant pressure builds up within the heating circuit, and maintain the second valve open upon the controller determining that sufficient refrigerant has been drawn out of the cooling circuit during the cycling of the second valve.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 12, 2015
    Assignee: Nissan North America, Inc.
    Inventor: Ronald Eisenhour
  • Publication number: 20140318159
    Abstract: A vehicle air conditioning system includes a compressor configured to compress refrigerant, a condenser, an evaporator, a temperature sensor and a controller. The condenser receives the refrigerant from the compressor and the evaporator receives the refrigerant from the condenser. The temperature sensor is positioned proximate the evaporator to measure a temperature of air passing through the evaporator prior to entering a vehicle passenger compartment. The controller is operatively coupled to the compressor to cycle the compressor on and off based upon the temperature measured by the temperature sensor and correlation data stored in the controller that correlates temperatures at the evaporator to estimated moisture densities at the evaporator to maintain the moisture density of the air in the vehicle passenger compartment below a predetermined moisture density threshold.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: Nissan North America, Inc.
    Inventor: Ronald EISENHOUR
  • Publication number: 20130219939
    Abstract: A vehicle heat pump system includes a compressor, a first valve coupled to an outlet of the compressor, a cooling circuit between the first valve and the inlet of the compressor, a heating circuit between the first valve and the inlet of the compressor and a controller. The heating circuit includes a heating circuit evaporator and a second valve between the heating circuit evaporator and the inlet of the compressor. The controller is configured to operate the first valve to switch between a cooling mode and a heating mode, cycle the second valve opened and closed in the heating mode, such that when closed, the compressor draws refrigerant out of the cooling circuit and refrigerant pressure builds up within the heating circuit, and maintain the second valve open upon the controller determining that sufficient refrigerant has been drawn out of the cooling circuit during the cycling of the second valve.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 29, 2013
    Applicant: NISSAN NORTH AMERICA, INC.
    Inventor: Ronald Eisenhour
  • Patent number: 7836715
    Abstract: An air conditioner has a controller that controls the operation of a refrigerant circuit that has a compressor, a condenser, an expansion valve or orifice tube, and an evaporator. The condenser receives a compressed refrigerant from the compressor and condenses the refrigerant to either a liquid phase or a saturated liquid-vapor phase. The condensed refrigerant is then passed through the expansion valve or orifice tube to expand the refrigerant and to delivery the refrigerant to the evaporator. When the compressor is first started, various sounds and vibrations are created that may be unpleasant to humans. Also, if the engine is cold, then the compressor may have liquid refrigerant that can increase the torque needed to start the compressor. The controller pulses the compressor between ON and OFF operating states to reduce or eliminate these sounds and/or manage the start up torque of the compressor.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: November 23, 2010
    Assignee: Nissan North America, Inc.
    Inventor: Ronald Eisenhour
  • Patent number: 7743627
    Abstract: A vehicle air conditioning system includes a pressure reducing device that is operatively coupled to a condenser downstream therefrom. An evaporator is operatively coupled to the pressure reducing device downstream therefrom. A refrigerant flow booster is operatively coupled to the evaporator downstream therefrom and a compressor is operatively coupled to the refrigerant flow booster downstream therefrom, the compressor also being operatively coupled to the condenser upstream therefrom. The refrigerant flow booster increases the flow of gaseous refrigerant to the compressor, in particular, when the compressor is operating at slower speeds.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: June 29, 2010
    Assignee: Nissan Technical Center North America, Inc.
    Inventor: Ronald Eisenhour
  • Patent number: 7363766
    Abstract: A vehicle air conditioning system includes a compressor, a condenser, an evaporator and a thermoelectric device. The compressor is configured to receive a refrigerant and compress the refrigerant to a compressed state. The condenser is in fluid communication with the compressor to receive the refrigerant in the compressed state via a high pressure tube. The evaporator is in fluid communication between the condenser and the compressor to receive the refrigerant from the condenser and convey the refrigerant to the compressor via a low pressure tube. The thermoelectric device is operatively arranged relative to at least a portion of the high pressure tube to remove heat from the high pressure tube.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: April 29, 2008
    Assignee: Nissan Technical Center North America, Inc.
    Inventor: Ronald Eisenhour
  • Publication number: 20070101747
    Abstract: A vehicle air conditioning system includes a compressor, a condenser, an evaporator and a thermoelectric device. The compressor is configured to receive a refrigerant and compress the refrigerant to a compressed state. The condenser is in fluid communication with the compressor to receive the refrigerant in the compressed state via a high pressure tube. The evaporator is in fluid communication between the condenser and the compressor to receive the refrigerant from the condenser and convey the refrigerant to the compressor via a low pressure tube. The thermoelectric device is operatively arranged relative to at least a portion of the high pressure tube to remove heat from the high pressure tube.
    Type: Application
    Filed: November 8, 2005
    Publication date: May 10, 2007
    Applicant: Nissan Technical Center North America, Inc.
    Inventor: Ronald Eisenhour
  • Publication number: 20070056301
    Abstract: An automatic climate control system for a vehicle determines actual sun load and a virtual sun load based on prescribed virtual heat load data and the external air temperature. A controller is configured to compare the actual sun load to the virtual sun load to obtain an optimized sun load value, and to control the system based on this optimized sun load value. A method for automatically controlling the climate includes determining measured sun load, determining external air temperature, comparing the measured sun load to the virtual sun load based on prescribed virtual heat load data and the external air temperature to obtain an optimized sun load value, and controlling the system based on the optimized sun load value. The virtual sun load and/or the measured sun load are used to determine the optimized sun load value depending on lighting conditions.
    Type: Application
    Filed: September 15, 2005
    Publication date: March 15, 2007
    Applicant: Nissan Technical Center North America, Inc.
    Inventor: Ronald Eisenhour
  • Publication number: 20070044491
    Abstract: A vehicle air conditioning system is disclosed that includes a compressor, a condenser, a front evaporator and a rear evaporator. The condenser is operably coupled to the compressor. The front evaporator is operably coupled to the condenser and the rear evaporator is operably coupled to the condenser. A high pressure tube operably couples the condenser to the rear evaporator and a low pressure tube operably couples the rear evaporator to the compressor. At least a portion of the high pressure tube and at least a portion of the low pressure tube are formed as a dual conduit section having side-by-side relationship for heat exchange therebetween.
    Type: Application
    Filed: August 25, 2005
    Publication date: March 1, 2007
    Applicant: Nissan Technical Center North America, Inc.
    Inventors: Antonio Prince, Ronald Eisenhour, Alaa Meram
  • Publication number: 20070033966
    Abstract: A vehicle air conditioning system is described herein that includes a pressure reducing device that is operatively coupled to a condenser downstream therefrom. An evaporator is operatively coupled to the pressure reducing device downstream from therefrom. A refrigerant flow booster is operatively coupled to the evaporator downstream therefrom and a compressor is operatively coupled to the refrigerant flow booster downstream therefrom, the compressor also being operatively coupled to the condenser upstream therefrom. The refrigerant flow booster increases the flow of gaseous refrigerant to the compressor, in particular, when the compressor is operating at slower speeds.
    Type: Application
    Filed: August 10, 2005
    Publication date: February 15, 2007
    Applicant: Nissan Technical Center North America, Inc.
    Inventor: Ronald Eisenhour
  • Patent number: 7165411
    Abstract: An air conditioner has a controller that controls the operation of a refrigerant circuit that has a compressor, a condenser, an expansion valve or orifice tube, and an evaporator. The condenser receives a compressed refrigerant from the compressor and condenses the refrigerant to either a liquid phase or a saturated liquid-vapor phase. The condensed refrigerant is then passed through the expansion valve or orifice tube to expand the refrigerant and to delivery the refrigerant to the evaporator. The controller is operatively coupled to the compressor to operate the compressor to change an average condenser temperature of the condenser from a first temperature to a second temperature that is lower than the first temperature based on at least one control signal indicative of thermal requirements of a vehicle component influenced by the average condenser temperature of the condenser.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: January 23, 2007
    Assignee: Nissan Technical Center North America, Inc.
    Inventor: Ronald Eisenhour
  • Publication number: 20060157576
    Abstract: A method and apparatus for automatically adjusting the flow rate of engine coolant through a heater core in an automobile by automatically determining a temperature difference between the temperature of coolant at a first flow rate before it enters a heater core and a temperature of air exiting the heater core and automatically increasing the flow rate of the coolant to a second flow rate higher than the first flow rate if the temperature difference is greater than a first predetermined temperature difference.
    Type: Application
    Filed: March 11, 2004
    Publication date: July 20, 2006
    Inventor: Ronald Eisenhour
  • Publication number: 20060059930
    Abstract: An air conditioner has a controller that controls the operation of a refrigerant circuit that has a compressor, a condenser, an expansion valve or orifice tube, and an evaporator. The condenser receives a compressed refrigerant from the compressor and condenses the refrigerant to either a liquid phase or a saturated liquid-vapor phase. The condensed refrigerant is then passed through the expansion valve or orifice tube to expand the refrigerant and to delivery the refrigerant to the evaporator. When the compressor is first started, various sounds and vibrations are created that may be unpleasant to humans. Also, if the engine is cold, then the compressor may have liquid refrigerant that can increase the torque needed to start the compressor. The controller pulses the compressor between ON and OFF operating states to reduce or eliminate these sounds and/or manage the start up torque of the compressor.
    Type: Application
    Filed: September 20, 2004
    Publication date: March 23, 2006
    Applicant: Nissan Technical Center North America, Inc.
    Inventor: Ronald Eisenhour
  • Publication number: 20060048531
    Abstract: An air conditioner has a controller that controls the operation of a refrigerant circuit that has a compressor, a condenser, an expansion valve or orifice tube, and an evaporator. The condenser receives a compressed refrigerant from the compressor and condenses the refrigerant to either a liquid phase or a saturated liquid-vapor phase. The condensed refrigerant is then passed through the expansion valve or orifice tube to expand the refrigerant and to delivery the refrigerant to the evaporator. The controller is operatively coupled to the compressor to operate the compressor to change an average condenser temperature of the condenser from a first temperature to a second temperature that is lower than the first temperature based on at least one control signal indicative of thermal requirements of a vehicle component influenced by the average condenser temperature of the condenser.
    Type: Application
    Filed: September 3, 2004
    Publication date: March 9, 2006
    Applicant: Nissan Technical Center North America, Inc.
    Inventor: Ronald Eisenhour
  • Publication number: 20050199735
    Abstract: A method and apparatus for more accurately determining the room temperature of air in an automobile cabin by automatically determining the room temperature of air in an automobile based on one or more of a temperature value for solid mass surrounding a temperature sensor, an outlet temperature value for outlet air leaving a conditioned air outlet vent, an air temperature value for air measured by an air temperature sensor, and a blending factor value based on estimated percentages of room temperature air and outlet air present in the air measured by the air temperature sensor.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 15, 2005
    Inventors: Ronald Eisenhour, Chris Oehring