Patents by Inventor Ronald Eugene Leibenguth

Ronald Eugene Leibenguth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030198267
    Abstract: The invention is a semiconductor optical device and method of fabrication where the device includes an active region with an active layer having a first index of refraction, and a blocking region having a second, lower index of refraction. A semiconductor layer having an index of refraction higher than the blocking region formed over both the active and blocking regions so that the layer is in closer proximity to the active layer in areas not covered by the blocking region so as to decrease the difference between the effective index of refraction in the active region and the effective refractive index of the blocking region. Such devices are particularly useful for pumping optical amplifiers since greater power can be achieved while maintaining single mode emission.
    Type: Application
    Filed: December 20, 2000
    Publication date: October 23, 2003
    Inventors: Si Hyung Cho, William Crossley Dautremont-Smith, Sun-Yuan Huang, Charles H. Joyner, Ronald Eugene Leibenguth, Abdallah Ougazzaden, Claude Lewis Reynolds
  • Patent number: 6635502
    Abstract: The invention is a semiconductor optical device and method of fabrication where the device includes an active region with an active layer having a first index of refraction, and a blocking region having a second, lower index of refraction. A semiconductor layer having an index of refraction higher than the blocking region is formed over both the active and blocking regions so that the semiconductor layer is in closer proximity to the active layer in areas not covered by the blocking region so as to decrease the difference between the effective index of refraction in the active region and the effective refractive index of the blocking region. Such devices are particularly useful for pumping optical amplifiers since greater power can be achieved while maintaining single mode emission.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: October 21, 2003
    Assignee: TriQuint Technology Holding Co.
    Inventors: Si Hyung Cho, William Crossley Dautremont-Smith, Sun-Yuan Huang, Charles H Joyner, Ronald Eugene Leibenguth, Abdallah Ougazzaden, Claude Lewis Reynolds, Jr.
  • Patent number: 6614115
    Abstract: A method for cooling an MOVPE deposited, As-containing, P-type contact layer includes cooling the contact layer in an arsine environment to preserve the contact layer during the initial stages of the cooling process until a threshold temperature in the range of 560 to 580° C. is attained. During the cooling process, the arsine flow is reduced with respect to the arsine flow used during the MOVPE deposition. After the threshold temperature is attained, the arsine gas is withdrawn and the contact layer is cooled further. Because of the removal of the arsine gas at the threshold temperature, free carrier concentration within the contact layer is enhanced above the atomic concentration of the P-type dopant, and contact resistance is improved to a suitably low level. A semiconductor optoelectronic device is formed to include such a contact layer, the P-type dopant impurity present in an atomic concentration and the contact layer having a free carrier concentration being greater than the atomic concentration.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: September 2, 2003
    Assignee: Agere Systems Inc.
    Inventors: Marlin Focht, Ronald Eugene Leibenguth, Claude Lewis Reynolds
  • Publication number: 20020175344
    Abstract: A method for cooling an MOVPE deposited, As-containing, P-type contact layer includes cooling the contact layer in an arsine environment to preserve the contact layer during the initial stages of the cooling process until a threshold temperature in the range of 560 to 580° C. is attained. During the cooling process, the arsine flow is reduced with respect to the arsine flow used during the MOVPE deposition. After the threshold temperature is attained, the arsine gas is withdrawn and the contact layer is cooled further. Because of the removal of the arsine gas at the threshold temperature, free carrier concentration within the contact layer is enhanced above the atomic concentration of the P-type dopant, and contact resistance is improved to a suitably low level. A semiconductor optoelectronic device is formed to include such a contact layer, the P-type dopant impurity present in an atomic concentration and the contact layer having a free carrier concentration being greater than the atomic concentration.
    Type: Application
    Filed: July 1, 2002
    Publication date: November 28, 2002
    Inventors: Marlin Focht, Ronald Eugene Leibenguth, Claude Lewis Reynolds
  • Patent number: 6440764
    Abstract: A method for cooling an MOVPE deposited, As-containing, P-type contact layer includes cooling the contact layer in an arsine environment to preserve the contact layer during the initial stages of the cooling process until a threshold temperature in the range of 560 to 580° C. is attained. During the cooling process, the arsine flow is reduced with respect to the arsine flow used during the MOVPE deposition. After the threshold temperature is attained, the arsine gas is withdrawn and the contact layer is cooled further. Because of the removal of the arsine gas at the threshold temperature, free carrier concentration within the contact layer is enhanced above the atomic concentration of the P-type dopant, and contact resistance is improved to a suitably low level.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: August 27, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventors: Marlin Focht, Ronald Eugene Leibenguth, Claude Lewis Reynolds
  • Patent number: 6169756
    Abstract: A VCSEL comprises separate current and optical guides that provide unique forms of drive current and transverse mode confinement, respectively. In one embodiment, the optical guide comprises an intracavity high refractive index mesa disposed transverse to the cavity resonator axis and a multi-layered dielectric (i.e., non-epitaxial) mirror overlaying the mesa. In another embodiment, the current guide comprises an annular first electrode which laterally surrounds the mesa but has an inside diameter which is greater than that of an ion-implantation-defined current aperture. The current guide causes current to flow laterally from the first electrode along a first path segment which is essentially perpendicular to the resonator axis, then vertically from the first segment along a second path segment essentially parallel to that axis, and finally through the current aperture and the active region to a second electrode.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: January 2, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Leo Maria Chirovsky, Lucian Arthur D'Asaro, William Scott Hobson, Sanghee Park Hui, Ronald Eugene Leibenguth, Betty Jyue Tseng, James Dennis Wynn, George John Zydzik