Patents by Inventor Ronald G. Searle

Ronald G. Searle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140323783
    Abstract: A method and system for converting hydrocarbons into C2+ unsaturates is described. The method includes providing a structural member upstream of a reaction zone having a surface of a catalytic material, wherein the catalytic material is rendered catalytically active to promote the reaction of coke and/or coke precursors with hydrogen (H2) and/or an oxidant. Then, the method involves exposing a hydrocarbon stream to the catalytic material, wherein the hydrocarbon stream comprising coke and/or coke precursors react in the presence of the catalytic material to convert at least a portion of the coke and/or coke precursors to vapor products. Finally, the hydrocarbons in the hydrocarbon stream containing vapor products and hydrocarbons are converted in the reaction zone to produce a reactor product having C2+ unsaturates.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 30, 2014
    Inventors: Paul F. Keusenkothen, Larry Lee Iaccino, Ronald G. Searle, S. Mark Davis
  • Patent number: 7479468
    Abstract: This invention provides an integrated system and process for forming light olefins and polymers from oxygenates, and optionally from natural gas. The integrated system includes an air separation unit, which separates air components into an oxygen stream and a nitrogen stream, and which also forms a compressed air stream. According to the present invention, the oxygen stream, the nitrogen stream and/or the compressed air stream from the air separation unit may serve as a reactant in syngas generation, as a regeneration medium in the methanol-to-olefins reaction system, as a fluidizing stream, as a blanketing medium, as a stripping medium, as instrument air, and/or as a reactant in a sulfur removal unit.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: January 20, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. van Egmond, Eric D. Nelson, Lawrence C. Smith, Ronald G. Searle, James H. Beech, Jr., Michael P. Nicoletti
  • Patent number: 7385100
    Abstract: This invention is directed to removing contaminants from an oxygenate-containing feedstream for an oxygenate to olefin reaction system. Oxygenate feeds used in the conversion of oxygenates to olefins, and which contain contaminants, are heated to form a vapor stream and a liquid stream. The heating is conducted so that a majority of the metalloaluminophosphate molecular sieve catalyst contaminants is contained in the liquid stream. The vapor stream is separated from the liquid stream, and the separated vapor stream is contacted with the metalloaluminophosphate molecular sieve catalyst to form olefin product. The heating of the feedstream and the separation of the vapor stream can be carried out in one or more stages.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: June 10, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Cor F. Van Egmond, Ronald G. Searle, Michael Peter Nicoletti, David Ritchie Lumgair, Jr.
  • Patent number: 7345213
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: March 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Shun C. Fung, Luc R. M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Patent number: 7214843
    Abstract: This invention is directed to removing contaminants from an oxygenate-containing feedstream for an oxygenate to olefin reaction system. Oxygenate feeds used in the conversion of oxygenates to olefins, and which contain contaminants, are heated to form a vapor stream and a liquid stream. The heating is conducted so that a majority of the metalloaluminophosphate molecular sieve catalyst contaminants is contained in the liquid stream. The vapor stream is separated from the liquid stream, and the separated vapor stream is contacted with the metalloaluminophosphate molecular sieve catalyst to form olefin product. The heating of the feedstream and the separation of the vapor stream can be carried out in one or more stages.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: May 8, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Cor. F. Van Egmond, Ronald G. Searle, Michael Peter Nicoletti, David Ritchie Lumgair, Jr.
  • Patent number: 7074979
    Abstract: A feed vaporization process and apparatus for oxygenate to olefin conversion is provided, which uses a vapor-liquid disengaging drum to separate non-volatiles and/or low-volatiles from volatiles in the oxygenate feed and produce a vaporized effluent that is reduced in non-volatiles and/or low-volatiles while at the same time maintaining the effluent at optimal temperature and pressure as a feed for oxygenate to olefin conversion. The feed vaporization process and apparatus is particularly well suited for selectively removing non-volatile contaminants such as soot and rust from an oxygenate-containing feed, which may have become contaminated during shipping.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Michael Peter Nicoletti, Ronald G. Searle
  • Patent number: 6979756
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: December 27, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun C. Fung, Marcel J. G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert Edward Schweizer, Cornelius W. M. Van Oorschot, Luc R. M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Patent number: 6899046
    Abstract: The invention relates to a process for modifying tanker ships. More specifically, the invention is directed to a process for modifying a non-methanol-carrying tanker to carry a methanol cargo destined for a methanol to olefin reaction system. The process includes providing a tanker having one or more holds that previously stored a non-methanol material. The process includes one or more of the following steps: (1) cleaning the holds of the crude/naphtha-carrying tanker to remove residual deposits, wherein the holds previously stored a non-methanol material; (2) providing a fire suppression system specially designed to prevent methanol fires; and (3) replacing methanol intolerant pump seals and flange gaskets in the tanker with methanol resistant seals and gaskets.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 31, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ronald G. Searle, Michael Peter Nicoletti, Cor F. Van Egmond
  • Patent number: 6838586
    Abstract: The invention is directed to a method for making a silicoaluminophosphate (SAPO) molecular sieve from a reaction mixture comprising components present in amounts sufficient to form the SAPO, the reaction mixture having a first pH. The method comprises the steps of: adding an acid to the reaction mixture after the reaction mixture undergoes a change in pH from the first pH; and crystallizing the SAPO from the reaction mixture. The present invention is also directed to a silicoaluminophosphate molecular sieve made by this process.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: January 4, 2005
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Brita Engels, Ronald G. Searle, Grigore Pop, Irina Rodica Tamas, Rodica Ganea, Ruxandra Birjega
  • Patent number: 6797852
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: September 28, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Shun C. Fung, Luc R. M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Publication number: 20040127763
    Abstract: A feed vaporization process and apparatus for oxygenate to olefin conversion is provided, which uses a vapor-liquid disengaging drum to separate non-volatiles and/or low-volatiles from volatiles in the oxygenate feed and produce a vaporized effluent that is reduced in non-volatiles and/or low-volatiles while at the same time maintaining the effluent at optimal temperature and pressure as a feed for oxygenate to olefin conversion. The feed vaporization process and apparatus is particularly well suited for selectively removing non-volatile contaminants such as soot and rust from an oxygenate-containing feed, which may have become contaminated during shipping.
    Type: Application
    Filed: April 22, 2003
    Publication date: July 1, 2004
    Inventors: Cor F. Van Egmond, Michael Peter Nicoletti, Ronald G. Searle
  • Publication number: 20040099195
    Abstract: The invention relates to a process for modifying tanker ships. More specifically, the invention is directed to a process for modifying a non-methanol-carrying tanker to carry a methanol cargo destined for a methanol to olefin reaction system. The process includes providing a tanker having one or more holds that previously stored a non-methanol material. The process includes one or more of the following steps: (1) cleaning the holds of the crude/naphtha-carrying tanker to remove residual deposits, wherein the holds previously stored a non-methanol material; (2) providing a fire suppression system specially designed to prevent methanol fires; and (3) replacing methanol intolerant pump seals and flange gaskets in the tanker with methanol resistant seals and gaskets.
    Type: Application
    Filed: November 26, 2002
    Publication date: May 27, 2004
    Inventors: Ronald G. Searle, Michael Peter Nicoletti, Cor F. Van Egmond
  • Publication number: 20040102670
    Abstract: This invention is directed to removing contaminants from an oxygenate-containing feedstream for an oxygenate to olefin reaction system. Oxygenate feeds used in the conversion of oxygenates to olefins, and which contain contaminants, are heated to form a vapor stream and a liquid stream. The heating is conducted so that a majority of the metalloaluminophosphate molecular sieve catalyst contaminants is contained in the liquid stream. The vapor stream is separated from the liquid stream, and the separated vapor stream is contacted with the metalloaluminophosphate molecular sieve catalyst to form olefin product. The heating of the feedstream and the separation of the vapor stream can be carried out in one or more stages.
    Type: Application
    Filed: October 14, 2003
    Publication date: May 27, 2004
    Inventors: James H. Beech, Cor. F. Van Egmond, Ronald G. Searle, Michael Peter Nicoletti, David Ritchie Lumgair
  • Publication number: 20040015030
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Application
    Filed: July 9, 2003
    Publication date: January 22, 2004
    Inventors: Marcel J.G. Janssen, Cornelius W.M. Van Oorschot, Shun C. Fung, Luc R.M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Patent number: 6670518
    Abstract: Disclosed is a method of recovering olefin from purge streams in a polyolefin production process. The method includes reacting a purge stream containing olefin and impurities with water in the presence of a hydrating catalyst to produce an alcohol containing stream. The impurities can include methane, ethane, butylenes, and hydrogen. The alcohol containing stream can be used to produce olefins in an oxygenate to olefin production process.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: December 30, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Ronald G. Searle
  • Patent number: 6642279
    Abstract: Disclosed is a method for recovering carbon dioxide from an ethylene oxide production process and using the recovered carbon dioxide as a carbon source for methanol synthesis. More specifically, carbon dioxide recovered from an ethylene oxide production process is used to produce a syngas stream. The syngas stream is then used to produce methanol.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: November 4, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Ronald G. Searle
  • Patent number: 6593506
    Abstract: Disclosed is a method of recovering olefin from purge streams in a polyolefin production process. The method includes reacting a purge stream containing olefin and impurities with water in the presence of a hydrating catalyst to produce an alcohol containing stream. The impurities can include methane, ethane, butylenes, and hydrogen. The alcohol containing stream can be used to produce olefins in an oxygenate to olefin production process.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: July 15, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Ronald G. Searle
  • Patent number: 6580010
    Abstract: Disclosed is a method for recovering olefin in an oxygenate to olefin production process. The method includes reacting a stream containing olefin with water in the presence of a hydrating catalyst to produce an alcohol containing stream. The alcohol containing stream can be used as an oxygenate feed in the oxygenate to olefin production process.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: June 17, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventor: Ronald G. Searle
  • Publication number: 20030092951
    Abstract: The invention is directed to a method for making a silicoaluminophosphate (SAPO) molecular sieve from a reaction mixture comprising components present in amounts sufficient to form the SAPO, the reaction mixture having a first pH. The method comprises the steps of: adding an acid to the reaction mixture after the reaction mixture undergoes a change in pH from the first pH; and crystallizing the SAPO from the reaction mixture. The present invention is also directed to a silicoaluminophosphate molecular sieve made by this process.
    Type: Application
    Filed: December 31, 2002
    Publication date: May 15, 2003
    Inventors: Machteld M. Mertens, Brita Engels, Ronald G. Searle, Grigore Pop, Irina Rodica Tamas, Rodica Ganea, Ruxandra Birjega
  • Publication number: 20030055304
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is, also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Application
    Filed: October 28, 2002
    Publication date: March 20, 2003
    Inventors: Shun C. Fung, Marcel J.G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert Edward Schweizer, Cornelius W.M. Van Oorschot, Luc R.M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong