Patents by Inventor Ronald J. Baird

Ronald J. Baird has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7799707
    Abstract: Methods of forming a gated, self-aligned nano-structures for electron extraction are disclosed. One method of forming the nano-structure comprises irradiating a first surface of a thermally conductive laminate to melt an area across the first surface of the laminate. The laminate comprises a thermally conductive film and a patterned layer disposed on the first surface of the film. The patterned layer has a pattern formed therethrough, defining the area for melting. The film is insulated at a second surface thereof to provide two-dimensional heat transfer laterally in plane of the film. The liquid density of the film is greater than the solid density thereof. The method further comprises cooling the area inwardly from the periphery thereof to form the nano-structure having an apical nano-tip for electron emission centered in an electrically isolated aperture that serves as a gate electrode to control electron extraction in a gated field emitter device.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: September 21, 2010
    Assignee: Wayne State University
    Inventors: Ronald J. Baird, Daniel G. Georgiev, Ivan Avrutsky, Golam Newaz, Gregory W. Auner
  • Publication number: 20090142936
    Abstract: Methods of forming a gated, self-aligned nano-structures for electron extraction are disclosed. One method of forming the nano-structure comprises irradiating a first surface of a thermally conductive laminate to melt an area across the first surface of the laminate. The laminate comprises a thermally conductive film and a patterned layer disposed on the first surface of the film. The patterned layer has a pattern formed therethrough, defining the area for melting. The film is insulated at a second surface thereof to provide two-dimensional heat transfer laterally in plane of the film. The liquid density of the film is greater than the solid density thereof. The method further comprises cooling the area inwardly from the periphery thereof to form the nano-structure having an apical nano-tip for electron emission centered in an electrically isolated aperture that serves as a gate electrode to control electron extraction in a gated field emitter device.
    Type: Application
    Filed: August 1, 2008
    Publication date: June 4, 2009
    Applicant: WAYNE STATE UNIVERSITY
    Inventors: RONALD J. BAIRD, Daniel G. Georgiev, Ivan Avrutsky, Golam Newaz, Gregory W. Auner
  • Patent number: 7402445
    Abstract: Methods of forming a nano-structure for electron extraction are disclosed. One method of forming a nano-structure comprises irradiating an area on a first surface of a thermal conductive film to melt the area across the film. The film is insulated on a second surface to provide two-dimensional heat transfer across the film. The liquid density of the film is greater than the solid density thereof. The method further comprises cooling the area inwardly from the periphery thereof to form a nano-structure having an apical nano-tip for electron extraction.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: July 22, 2008
    Assignee: Wayne State University
    Inventors: Daniel G. Georgiev, Ivan Avrutsky, Ronald J. Baird, Golam Newaz, Gregory W. Auner
  • Patent number: 4919974
    Abstract: Method of making a composite coated article by the steps of: (a) initiating chemical vapor deposition of separated diamond or diamond-like particles onto a nondiamond or nondiamond-like substrate surface by use of low pressure metastable deposition of carbon in the presence of atomic hydrogen and at a temperature (i.e., 600.degree.-950.degree. C.) that favors the nucleation of such particles, the substrate being selected to retain its strength related properties after said chemical vapor deposition (ie., SiAlON, Si.sub.3 N.sub.4, SiC, Si, Ti, Co cemented WC, TiC, Ni-Mo cemented TiCN); (b) substantially suppressing nucleation of additional particles (heating to above about 1000.degree. C.) before formation of a contiguous film of said particles while permitting the existing particles to grow to a predetermined maximum crystal size consistent with separated crystals; and (c) depositing a mechanically tough, diamond and substrate-wetting metal binding material (i.e.
    Type: Grant
    Filed: January 12, 1989
    Date of Patent: April 24, 1990
    Assignee: Ford Motor Company
    Inventors: Robert C. McCune, Ronald J. Baird