Patents by Inventor Ronald Justin Stanis

Ronald Justin Stanis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160145750
    Abstract: A method for producing methanol from methane in which methane is provided to an anode electrode having a metal oxide catalyst disposed on an anode side of an electrolyte membrane, thereby producing methanol and electrons on the anode side. The electrons are conducted to a cathode electrode such as having an oxygen reduction catalyst disposed on a cathode side of the electrolyte membrane, thereby transforming oxygen and water provided to the cathode side to hydroxide ions.
    Type: Application
    Filed: November 18, 2015
    Publication date: May 26, 2016
    Applicant: Gas Technology Institute
    Inventors: Ronald Justin STANIS, Qinbai FAN, Renxuan LIU
  • Patent number: 9240287
    Abstract: The use of fuel cells to produce electricity are known as an environmentally clean and reliable source of energy, and show promise as an automotive power source if the polymer electrolyte membrane fuel cell can be made less expensive, more durable, reduce or eliminate humidification of the reactive gases, and operate at temperatures encountered during automotive operating conditions. The use of an electro-catalyst formed from heteropoly acids immobilized by a conductive material, such as carbon or platinum black, and stabilizing a metallic black with the immobilized conductive material addressed these automotive fuel cell needs. Coating the fuel cell electrode, polymer electrolyte assembly with a nano-particle catalyst derived from a heteropoly acid provided anodic carbon monoxide tolerance at anodic overpotentials and an active cathodic oxygen reduction. The heteropoly acids can also function as supercapacitor electrode films.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: January 19, 2016
    Assignee: Colorado School of Mines
    Inventors: Ronald Justin Stanis, Andrew Michael Herring, Mei-chen Kuo, Jack Richard Ferrell
  • Publication number: 20140234750
    Abstract: The use of fuel cells to produce electricity are known as an environmentally clean and reliable source of energy, and show promise as an automotive power source if the polymer electrolyte membrane fuel cell can be made less expensive, more durable, reduce or eliminate humidification of the reactive gases, and operate at temperatures encountered during automotive operating conditions. The use of an electro-catalyst formed from heteropoly acids immobilized by a conductive material, such as carbon or platinum black, and stabilizing a metallic black with the immobilized conductive material addressed these automotive fuel cell needs. Coating the fuel cell electrode, polymer electrolyte assembly with a nano-particle catalyst derived from a heteropoly acid provided anodic carbon monoxide tolerance at anodic overpotentials and an active cathodic oxygen reduction. The heteropoly acids can also function as supercapacitor electrode films.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 21, 2014
    Applicant: COLORADO SCHOOL OF MINES
    Inventors: Ronald Justin Stanis, Andrew Michael Herring, Mei-chen Kuo, Jack Richard Ferrell
  • Patent number: 8753997
    Abstract: The use of fuel cells to produce electricity are known as an environmentally clean and reliable source of energy, and show promise as an automotive power source if the polymer electrolyte membrane fuel cell can be made less expensive, more durable, reduce or eliminate humidification of the reactive gases, and operate at temperatures encountered during automotive operating conditions. The use of an electro-catalyst formed from heteropoly acids immobilized by a conductive material, such as carbon or platinum black, and stabilizing a metallic black with the immobilized conductive material addressed these automotive fuel cell needs. Coating the fuel cell electrode, polymer electrolyte assembly with a nano-particle catalyst derived from a heteropoly acid provided anodic carbon monoxide tolerance at anodic overpotentials and an active cathodic oxygen reduction. The heteropoly acids can also function as supercapacitor electrode films.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: June 17, 2014
    Assignee: Colorado School of Mines
    Inventors: Ronald Justin Stanis, Andrew Michael Herring, Mei-Chen Kuo, Jack Richard Ferrell, III
  • Publication number: 20080299433
    Abstract: The use of fuel cells to produce electricity are known as an environmentally clean and reliable source of energy, and show promise as an automotive power source if the polymer electrolyte membrane fuel cell can be made less expensive, more durable, reduce or eliminate humidification of the reactive gases, and operate at temperatures encountered during automotive operating conditions. The use of an electro-catalyst formed from heteropoly acids immobilized by a conductive material, such as carbon or platinum black, and stabilizing a metallic black with the immobilized conductive material addressed these automotive fuel cell needs. Coating the fuel cell electrode, polymer electrolyte assembly with a nano-particle catalyst derived from a heteropoly acid provided anodic carbon monoxide tolerance at anodic overpotentials and an active cathodic oxygen reduction. The heteropoly acids can also function as supercapacitor electrode films.
    Type: Application
    Filed: May 16, 2008
    Publication date: December 4, 2008
    Inventors: Ronald Justin Stanis, Andrew Michael Herring, Mei-Chen Kuo, Jack Richard Ferrell, III