Patents by Inventor Ronald L. Rose

Ronald L. Rose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8367565
    Abstract: In accordance with some embodiments described herein, a method for transferring a substrate is provided. The method includes loading one or more substrates into a respective mobile chamber of one or more mobile chambers. The mobile chambers are movable on a first rail positioned adjacent to two or more process modules. Each mobile chamber is configured to maintain a specified gas condition. The respective mobile chamber is moved along the first rail. The respective mobile chamber is docked to a respective process module of the two or more process modules. At least one of the one or more substrates is conveyed from the respective mobile chamber to the respective process module.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: February 5, 2013
    Assignee: Archers Inc.
    Inventors: Lawrence Chung-Lai Lei, Alfred Mak, Rex Liu, Kon Park, Samuel S. Pak, Tzy-Chung Terry Wu, Simon Zhu, Ronald L. Rose, Gene Shin, Xiaoming Wang
  • Patent number: 8268734
    Abstract: In accordance with some embodiments described herein, a method for transferring a substrate to two or more process modules is provided, comprising loading at least one substrate into one or more mobile transverse chambers, the mobile transverse chambers being carried on a rail positioned adjacent to the two or more process modules, and wherein each mobile transverse chamber is configured to maintain a specified gas condition during conveyance of the substrate. One or more drive systems are actuated to propel at least one of the one or more mobile transverse chambers along the rail. The at least one mobile transfer chamber docks to at least one of the process modules, and the substrate is conveyed from the mobile transverse chamber to the at least one process modules.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: September 18, 2012
    Assignee: Archers Inc.
    Inventors: Lawrence Chung-Lai Lei, Alfred Mak, Rex Liu, Kon Park, Samuel S. Pak, Tzy-Chung Terry Wu, Simon Zhu, Ronald L. Rose, Gene Shin, Xiaoming Wang
  • Publication number: 20110217469
    Abstract: In accordance with some embodiments described herein, a method for transferring a substrate is provided. The method includes loading one or more substrates into a respective mobile chamber of one or more mobile chambers. The mobile chambers are movable on a first rail positioned adjacent to two or more process modules. Each mobile chamber is configured to maintain a specified gas condition. The respective mobile chamber is moved along the first rail. The respective mobile chamber is docked to a respective process module of the two or more process modules. At least one of the one or more substrates is conveyed from the respective mobile chamber to the respective process module.
    Type: Application
    Filed: December 20, 2010
    Publication date: September 8, 2011
    Inventors: Lawrence Chung-Lai Lei, Alfred Mak, Rex Liu, Kon Park, Samuel S. Pak, Tzy-Chung Terry Wu, Simon Zhu, Ronald L. Rose, Gene Shin, Xiaoming Wang
  • Publication number: 20110151119
    Abstract: In accordance with some embodiments described herein, a method for transferring a substrate to two or more process modules is provided, comprising loading at least one substrate into one or more mobile transverse chambers, the mobile transverse chambers being carried on a rail positioned adjacent to the two or more process modules, and wherein each mobile transverse chamber is configured to maintain a specified gas condition during conveyance of the substrate. One or more drive systems are actuated to propel at least one of the one or more mobile transverse chambers along the rail. The at least one mobile transfer chamber docks to at least one of the process modules, and the substrate is conveyed from the mobile transverse chamber to the at least one process modules.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Inventors: Lawrence Chung-Lai Lei, Alfred Mak, Rex Liu, Kon Park, Samuel S. Pak, Tzy-Chung Terry Wu, Simon Zhu, Ronald L. Rose, Gene Shin, Xiaoming Wang
  • Patent number: 7897525
    Abstract: In accordance with some embodiments described herein, a method for transferring a substrate to two or more process modules is provided, comprising loading at least one substrate into one or more mobile transverse chambers, the mobile transverse chambers being carried on a rail positioned adjacent to the two or more process modules, and wherein each mobile transverse chamber is configured to maintain a specified gas condition during conveyance of the substrate. One or more drive systems are actuated to propel at least one of the one or more mobile transverse chambers along the rail. The at least one mobile transfer chamber docks to at least one of the process modules, and the substrate is conveyed from the mobile transverse chamber to the at least one process modules.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: March 1, 2011
    Assignee: Archers Inc.
    Inventors: Lawrence Chung-Lai Lei, Alfred Mak, Rex Liu, Kon Park, Samuel S. Pak, Tzy-Chung Terry Wu, Simon Zhu, Ronald L. Rose, Gene Shin, Xiaoming Wang
  • Publication number: 20100167503
    Abstract: In accordance with some embodiments described herein, a method for transferring a substrate to two or more process modules is provided, comprising loading at least one substrate into one or more mobile transverse chambers, the mobile transverse chambers being carried on a rail positioned adjacent to the two or more process modules, and wherein each mobile transverse chamber is configured to maintain a specified gas condition during conveyance of the substrate. One or more drive systems are actuated to propel at least one of the one or more mobile transverse chambers along the rail. The at least one mobile transfer chamber docks to at least one of the process modules, and the substrate is conveyed from the mobile transverse chamber to the at least one process modules.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Lawrence Chung-Lai Lei, Alfred Mak, Rex Liu, Kon Park, Samuel S. Pak, Tzy-Chung Terry Wu, Simon Zhu, Ronald L. Rose, Gene Shin, Xiaoming Wang
  • Publication number: 20100162954
    Abstract: In accordance with some embodiments described herein, a process module facility is provided, comprising: at least one process chamber carried in frame, a subfloor adjacent the process module, a stationary pump and electrical box positioned atop the subfloor; and gas control lines and vacuum exhaust lines housed within the subfloor and coupled the process chamber. The process module facility may be integrated with a larger system for processing substrates which includes two or more process module facilities, a substrate handling robot, a load lock chamber, and a transverse substrate handler. The transverse substrate handler includes mobile transverse chambers configured to convey substrates to process modules, wherein each mobile transverse chamber is configured to maintain a specified gas condition during the conveyance of the substrates.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Lawrence Chung-Lai Lei, Alfred Mak, Rex Liu, Kon Park, Tzy-Chung Terry Wu, Ronald L. Rose
  • Patent number: 6517592
    Abstract: A temperature-controlled exhaust assembly with cold trap capability. One embodiment of the exhaust assembly comprises a multi-heater design which allows for independent multi-zone closed-loop temperature control. Another embodiment comprises a compact multi-valve uni-body design incorporating a single heater for simplified closed-loop temperature control. The cold trap incorporates a heater for temperature control at the inlet of the trap to minimize undesirable deposits. One embodiment also comprises a multi-stage cold trap and a particle trap. As a removable unit, this cold trap provides additional safety in the handling and disposal of the adsorbed condensables.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: February 11, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Salvador P. Umotoy, Lawrence Chung-Lai Lei, Russell C. Ellwanger, Ronald L. Rose, Joel Huston, James Jin-Long Chen
  • Publication number: 20010050053
    Abstract: A temperature-controlled exhaust assembly with cold trap capability. One embodiment of the exhaust assembly comprises a multi-heater design which allows for independent multi-zone closed-loop temperature control. Another embodiment comprises a compact multi-valve uni-body design incorporating a single heater for simplified closed-loop temperature control. The cold trap incorporates a heater for temperature control at the inlet of the trap to minimize undesirable deposits. One embodiment also comprises a multi-stage cold trap and a particle trap. As a removable unit, this cold trap provides additional safety in the handling and disposal of the adsorbed condensables.
    Type: Application
    Filed: December 19, 2000
    Publication date: December 13, 2001
    Applicant: Applied Materials, Inc.
    Inventors: Salvador P. Umotoy, Lawrence Chung-Lai Lei, Russell C. Ellwanger, Ronald L. Rose, Joel Huston, James Jin-Long Chen
  • Publication number: 20010042513
    Abstract: An apparatus and methods for an upgraded CVD system providing a remote plasma for efficiently cleaning a chamber, according to a specific embodiment. Etching or depositing a layer onto a substrate also may be achieved using the upgraded CVD system of the present invention. In a specific embodiment, the present invention provides apparatus for an easily removable, conveniently handled, and relatively inexpensive, robust microwave plasma source as a retrofit for or a removable addition to existing CVD apparatus. The present invention provides an improved CVD apparatus or retrofit of existing CVD apparatus capable of producing a remote plasma for efficiently cleaning the chamber.
    Type: Application
    Filed: July 27, 2001
    Publication date: November 22, 2001
    Inventors: Chien-Teh Kao, Kenneth Tsai, Quyen Pham, Ronald L. Rose, Calvin R. Augason, Joseph Yudovsky
  • Patent number: 6271148
    Abstract: An apparatus and methods for an upgraded CVD system providing a remote plasma for efficiently cleaning a chamber, according to a specific embodiment. Etching or depositing a layer onto a substrate also may be achieved using the upgraded CVD system of the present invention. In a specific embodiment, the present invention provides apparatus for an easily removable, conveniently handled, and relatively inexpensive, robust microwave plasma source as a retrofit for or a removable addition to existing CVD apparatus. The present invention provides an improved CVD apparatus or retrofit of existing CVD apparatus capable of producing a remote plasma for efficiently cleaning the chamber.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: August 7, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Kenneth Tsai, Quyen Pham, Ronald L. Rose, Calvin R. Augason, Joseph Yudovsky
  • Publication number: 20010004879
    Abstract: A temperature-controlled exhaust assembly with cold trap capability. One embodiment of the exhaust assembly comprises a multi-heater design which allows for independent multi-zone closed-loop temperature control. Another embodiment comprises a compact multi-valve uni-body design incorporating a single heater for simplified closed-loop temperature control. The cold trap incorporates a heater for temperature control at the inlet of the trap to minimize undesirable deposits. One embodiment also comprises a multi-stage cold trap and a particle trap. As a removable unit, this cold trap provides additional safety in the handling and disposal of the adsorbed condensables.
    Type: Application
    Filed: December 19, 2000
    Publication date: June 28, 2001
    Applicant: Applied Materials, Inc.
    Inventors: Salvador P. Umotoy, Lawrence Chung-Lai Lei, Russell C. Ellwanger, Ronald L. Rose, Joel Huston, James Jin-Long Chen
  • Patent number: 6206971
    Abstract: A temperature-controlled exhaust assembly with cold trap capability. One embodiment of the exhaust assembly comprises a multi-heater design which allows for independent multi-zone closed-loop temperature control. Another embodiment comprises a compact multi-valve uni-body design incorporating a single heater for simplified closed-loop temperature control. The cold trap incorporates a heater for temperature control at the inlet of the trap to minimize undesirable deposits. One embodiment also comprises a multi-stage cold trap and a particle trap. As a removable unit, this cold trap provides additional safety in the handling and disposal of the adsorbed condensables.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: March 27, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Salvador P. Umotoy, Lawrence Chung-Lai Lei, Russell C. Ellwanger, Ronald L. Rose, Joel Huston, James Jin-Long Chen
  • Patent number: 6026762
    Abstract: An apparatus and methods for an upgraded CVD system providing a remote plasma for efficiently cleaning a chamber, according to a specific embodiment. Etching or depositing a layer onto a substrate also may be achieved using the upgraded CVD system of the present invention. In a specific embodiment, the present invention provides apparatus for an easily removable, conveniently handled, and relatively inexpensive, robust microwave plasma source as a retrofit for or a removable addition to existing CVD apparatus. The present invention provides an improved CVD apparatus or retrofit of existing CVD apparatus capable of producing a remote plasma for efficiently cleaning the chamber.
    Type: Grant
    Filed: April 23, 1997
    Date of Patent: February 22, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Kenneth Tsai, Quyen Pham, Ronald L. Rose, Calvin R. Augason, Joseph Yudovsky
  • Patent number: 5522937
    Abstract: A susceptor support arm assembly in a substrate processing chamber includes a secure ground connection between the susceptor and ground. An aluminum wire rope is welded to a winged terminal lug which is tightly inserted into a hole in a susceptor hub. The wings of the lug are then welded to the hub. The wire rope, now permanently attached to the susceptor hub, is routed through an opening in the susceptor end of a ceramic susceptor support arm, able to pass the ground end lug of the wire rope, through a channel in the support arm back to the susceptor arm support device, and to ground. The channel in the susceptor arm has grooves in its sides to receive a paddle shaped ceramic cover to enclose the channel and the bottom of the hub end of the susceptor arm. The cover insulates, isolates, and shields the grounding wire and thermocouple leads being routed from the susceptor hub back to the support end of the susceptor arm from exposure to the high intensity radiant energy directed at the back of the susceptor.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: June 4, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Sandy M. Chew, Dale R. DuBois, Ronald L. Rose, Manus Wong
  • Patent number: 5326725
    Abstract: A clamping ring having a downwardly extending finger that mates with a pocket in the periphery of a susceptor for supporting a wafer in a chemical vapor deposition chamber, provides alignment of the clamping ring, the wafer and the susceptor. A source of inert gas connected to the pocket provides a positive pressure in the pocket that prevents reactive gas in the chamber from reaching the edge and backside of the wafer. A source of vacuum connected to the susceptor support surface ensures good contact between the wafer and the susceptor.The clamping ring also has a lip extending over the top surface of the wafer having a rear surface that has a negative angle with respect to the upper surface of the clamping ring, providing a knife edge seal to the wafer, reducing the area of contact between the clamping ring and the wafer and providing a reduced area of thermal contact between the clamping ring and the wafer.
    Type: Grant
    Filed: March 11, 1993
    Date of Patent: July 5, 1994
    Assignee: Applied Materials, Inc.
    Inventors: Semyon Sherstinsky, Charles C. Harris, Mei Chang, Dale R. Du Bois, James F. Roberts, Susan Telford, Ronald L. Rose, Meng C. Tseng, Karl A. Littau