Patents by Inventor Ronald L. Walsworth

Ronald L. Walsworth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8547090
    Abstract: A method is disclosed for increasing the sensitivity of a solid state electronic spin based magnetometer that makes use of individual electronic spins or ensembles of electronic spins in a solid-state lattice, for example NV centers in a diamond lattice. The electronic spins may be configured to undergo a Zeeman shift in energy level when photons of light are applied to the electronic spins followed by pulses of an RF field that is substantially transverse to the magnetic field being detected. The method may include coherently controlling the electronic spins by applying to the electronic spins a sequence of RF pulses that dynamically decouple the electronic spins from mutual spin-spin interactions and from interactions with the lattice. The sequence of RF pulses may be a Hahn spin-echo sequence, a Can Purcell Meiboom Gill sequence, or a MREV8 pulse sequence, by way of example.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: October 1, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Mikhail D. Lukin, Ronald L. Walsworth, Amir Yacoby, Paola Cappellaro, Jacob M. Taylor, Liang Jiang, Lilian Childress
  • Publication number: 20100315079
    Abstract: A method is disclosed for increasing the sensitivity of a solid state electronic spin based magnetometer that makes use of individual electronic spins or ensembles of electronic spins in a solid-state lattice, for example NV centers in a diamond lattice. The electronic spins may be configured to undergo a Zeeman shift in energy level when photons of light are applied to the electronic spins followed by pulses of an RF field that is substantially transverse to the magnetic field being detected. The method may include coherently controlling the electronic spins by applying to the electronic spins a sequence of RF pulses that dynamically decouple the electronic spins from mutual spin-spin interactions and from interactions with the lattice. The sequence of RF pulses may be a Hahn spin-echo sequence, a Can Purcell Meiboom Gill sequence, or a MREV8 pulse sequence, by way of example.
    Type: Application
    Filed: December 3, 2008
    Publication date: December 16, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mikhail Lukin, Ronald L. Walsworth, Amir Yacoby, Paola Capellaro, Jake Taylor, Liang Jiang, Lillian Childress
  • Publication number: 20100308813
    Abstract: A magnetometer for sensing a magnetic field may include a solid state electronic spin system, and a detector. The solid state electronic spin system may contain one or more electronic spins that are disposed within a solid state lattice, for example NV centers in diamond. The electronic spins may be configured to receive optical excitation radiation and to align with the magnetic field in response thereto. The electronic spins may be further induced to precess about the magnetic field to be sensed, in response to an external control such as an RF field, the frequency of the spin precession being linearly related to the magnetic field by the Zeeman shift of the electronic spin energy levels. The detector may be configured to detect output optical radiation from the electronic spin, so as to determine the Zeeman shift and thus the magnetic field.
    Type: Application
    Filed: December 3, 2008
    Publication date: December 9, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mikhail Lukin, Ronald L. Walsworth
  • Publication number: 20080284429
    Abstract: The present invention generally relates to compositions, systems and methods for inducing nuclear hyperpolarization in imaging agents after they have been introduced into a subject.
    Type: Application
    Filed: December 11, 2006
    Publication date: November 20, 2008
    Applicant: The President and Fellows of Harvard College
    Inventors: Charles M. Marcus, Jacob W. Aptekar, Alexander C. Johnson, Ronald L. Walsworth