Patents by Inventor Ronald M. Evans

Ronald M. Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230373948
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: February 13, 2023
    Publication date: November 23, 2023
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Publication number: 20230097335
    Abstract: The present disclosure provides FGF1 mutant proteins, which selectively bind to/activate FGFR1b. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed FGF1 mutants to reduce blood glucose in a mammal and treat a metabolic disorder are provided.
    Type: Application
    Filed: December 2, 2022
    Publication date: March 30, 2023
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sihao Liu, Ruth T. Yu
  • Patent number: 11578052
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 14, 2023
    Assignees: Mitobridge, Inc., The Salk Institute for Biological Studies
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Patent number: 11542309
    Abstract: The present disclosure provides FGF1 mutant proteins, which selectively bind to/activate FGFR1b. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed FGF1 mutants to reduce blood glucose in a mammal and treat a metabolic disorder are provided.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: January 3, 2023
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sihao Liu, Ruth T. Yu
  • Patent number: 11440889
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: September 13, 2022
    Assignees: The Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Patent number: 11420934
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: August 23, 2022
    Assignees: The Salk Institute for Biological Studies, Mitobridge, Inc.
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, Joseph P. Noel, Emi Kanakubo Embler, Weiwei Fan, John F. W. Keana, Mark G. Bock, Authur F. Kluge, Mike A. Patane
  • Patent number: 11376264
    Abstract: Methods are provided for reducing blood glucose, which utilize an agent that increases the biological activity of a vitamin D receptor (VDR) (e.g., a VDR agonist), in combination with an antagonist of bromodomain-containing protein 9 (BRD9). IN some examples, such methods treat type II diabetes.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: July 5, 2022
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Zong Wei, Annette Atkins, Ruth T. Yu
  • Patent number: 11130779
    Abstract: Provided herein are deuterated compounds and compositions useful in increasing PPAR? activity. The compounds have a formula where L5 comprises at least one deuterium. Exemplary species include The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 28, 2021
    Assignee: The Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes
  • Publication number: 20210283187
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Application
    Filed: January 5, 2021
    Publication date: September 16, 2021
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD M. EVANS, EIJI YOSHIHARA, MICHAEL R. DOWNES, RUTH T. YU, ANNETTE R. ATKINS
  • Publication number: 20210253549
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: January 29, 2021
    Publication date: August 19, 2021
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Publication number: 20210147365
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 1, 2020
    Publication date: May 20, 2021
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Patent number: 10912800
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: February 9, 2021
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Ronald M. Evans, Eiji Yoshihara, Michael R. Downes, Ruth T. Yu, Annette R. Atkins
  • Publication number: 20210032303
    Abstract: The present disclosure provides FGF1 mutant proteins, which selectively bind to/activate FGFR1b. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed FGF1 mutants to reduce blood glucose in a mammal and treat a metabolic disorder are provided.
    Type: Application
    Filed: July 15, 2020
    Publication date: February 4, 2021
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sihao Liu, Ruth T. Yu
  • Patent number: 10906885
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: February 2, 2021
    Assignees: Mitobridge, Inc., The Salk Institute for Biological Studies
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Patent number: 10815203
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: October 27, 2020
    Assignees: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Publication number: 20200216490
    Abstract: Provided herein are deuterated compounds and compositions useful in increasing PPAR? activity. The compounds have a formula where L5 comprises at least one deuterium. Exemplary species include The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: December 17, 2019
    Publication date: July 9, 2020
    Applicant: The Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes
  • Patent number: 10695404
    Abstract: Methods of using FGF1 analogs, such as FGF1 mutant proteins having an N-terminal deletion, point mutation(s), or combinations thereof, to reduce blood glucose levels in subjects with steroid-induced diabetes, hypercortisolemia, or diabetes due to treatment with an antipsychotic agent, are provided. Such mutant FGF1 proteins can be part of a chimeric protein that includes a ?-Klotho-binding protein, an FGFR1-binding protein, a ?-Klotho-binding protein and a FGFR1-binding protein, a C-terminal region from FGF19 or FGF21.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: June 30, 2020
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Ruth T. Yu
  • Publication number: 20200190019
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Applicants: Salk Institute for Biological Studies, Mitobridge, Inc.
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, Joseph P. Noel, Emi Kanakubo Embler, Weiwei Fan, John F.W. Keana, Mark G. Bock, Authur F. Kluge, Mike A. Patane
  • Publication number: 20200157074
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: November 13, 2019
    Publication date: May 21, 2020
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Publication number: 20200129532
    Abstract: Methods are provided for reducing blood glucose, which utilize an agent that increases the biological activity of a vitamin D receptor (VDR) (e.g., a VDR agonist), in combination with an antagonist of bromodomain-containing protein 9 (BRD9). IN some examples, such methods treat type II diabetes.
    Type: Application
    Filed: January 8, 2020
    Publication date: April 30, 2020
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Zong Wei, Annette Atkins, Ruth T. Yu