Patents by Inventor Ronald M Parker

Ronald M Parker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12025900
    Abstract: This disclosure describes insulated glass units (IGUs) that incorporate electrochromic devices. More specifically, this disclosure focuses on different configurations available for providing an electrical connection to the interior region of an IGU. In many cases, an IGU includes two panes separated by a spacer. The spacer defines an interior region of the IGU and an exterior region of the IGU. Often, the electrochromic device positioned on the pane does not extend past the spacer, and some electrical connection must be provided to supply power from the exterior of the IGU to the electrochromic device on the interior of the IGU. In some embodiments, the spacer includes one or more holes (e.g, channels, mouse holes, other holes, etc.) through which an electrical connection (e.g., wires, busbar leads, etc.) may pass to provide power to the electrochromic device.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: July 2, 2024
    Assignee: View, Inc.
    Inventors: Ronald M. Parker, Yashraj Bhatnagar, Trevor Frank, Travis D. Wilbur, Stephen C. Brown
  • Publication number: 20240123708
    Abstract: Methods of manufacturing electrochromic windows are described. An electrochromic device is fabricated to substantially cover a glass sheet, for example float glass, and a cutting pattern is defined based on one or more low-defectivity areas in the device from which one or more electrochromic panes are cut. Laser scribes and/or bus bars may be added prior to cutting the panes or after. Edge deletion can also be performed prior to or after cutting the electrochromic panes from the glass sheet. Insulated glass units (IGUs) are fabricated from the electrochromic panes and optionally one or more of the panes of the IGU are strengthened.
    Type: Application
    Filed: August 31, 2023
    Publication date: April 18, 2024
    Applicant: View, Inc.
    Inventors: Mark A. Collins, Ronald M. Parker, Robert T. Rozbicki, Dhairya Shrivastava
  • Patent number: 11960189
    Abstract: This disclosure provides spacers for smart windows. In one aspect, a window assembly includes a first substantially transparent substrate having an optically switchable device on a surface of the first substrate. The optically switchable device includes electrodes. A first electrode of the electrodes has a length about the length of a side of the optically switchable device. The window assembly further includes a second substantially transparent substrate a metal spacer between the first and the second substrates. The metal spacer has a substantially rectangular cross section, with one side of the metal spacer including a recess configured to accommodate the length of the first electrode such that there is no contact between the first electrode and the metal spacer. A primary seal material bonds the first substrate to the metal spacer and bonds the second substrate to the metal spacer.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: April 16, 2024
    Assignee: View, Inc.
    Inventors: Yashraj Bhatnagar, Trevor Frank, Fabian Strong, Sridhar Karthik Kailasam, Robert Babcock, Ronald M. Parker, Robert T. Rozbicki
  • Patent number: 11934080
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: March 19, 2024
    Assignee: View, Inc.
    Inventors: Sridhar K. Kailasam, Dhairya Shrivastava, Zhiwei Cai, Robert T. Rozbicki, Dane Gillaspie, Todd Martin, Anshu A. Pradhan, Ronald M. Parker
  • Patent number: 11880419
    Abstract: A network function is implemented using cloud native architecture. The network function utilizes one or more loosely coupled and independently deployable microservice instances to perform services. To retain state between independent transactions, a microservice instance takes a soft lock on state data in an external database. The soft lock makes the state data unavailable except to the microservice instance. After the microservice instance completes the transaction, the microservice instance clears the lock so that the state data is available for use by other microservices.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: January 23, 2024
    Assignee: Microsoft Tech nology Licensing, LLC
    Inventors: Mark Libby, Ronald M. Parker, Haibo Qian
  • Patent number: 11831562
    Abstract: Systems and methods for efficient database management of non-transitory readable media, including a memory configured to store information associated with service instance requests across a plurality of distributed network resources and a processor configured to receive a service instance request, determine the first native domain object associated with the service instance request, allocate the plurality of network resources to a plurality of distributed worker instances dependent upon a first native domain object, assign the first service instance request to a first worker instance that includes a microservice instance that define service instance blocks to execute the request, and a service instance block manager configured to manage the first service instance request in conjunction with subsequent service instance requests associated with the plurality of worker instances, track running and completed requests, and allocate resources for similar requests across the distributed network nodes.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: November 28, 2023
    Inventors: Ronald M. Parker, Jeremy Brown, Haibo Qian
  • Publication number: 20230314893
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Application
    Filed: May 23, 2023
    Publication date: October 5, 2023
    Inventors: Sridhar Karthik Kailasam, Dhairya Shrivastava, Zhiwei Cai, Robert Tad Rozbicki, Dane Thomas Gillaspie, Todd William Martin, Anshu Ajit Pradhan, Ronald M. Parker
  • Patent number: 11772366
    Abstract: Methods of manufacturing electrochromic windows are described. An electrochromic device is fabricated to substantially cover a glass sheet, for example float glass, and a cutting pattern is defined based on one or more low-defectivity areas in the device from which one or more electrochromic panes are cut. Laser scribes and/or bus bars may be added prior to cutting the panes or after. Edge deletion can also be performed prior to or after cutting the electrochromic panes from the glass sheet. Insulated glass units (IGUs) are fabricated from the electrochromic panes and optionally one or more of the panes of the IGU are strengthened.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: October 3, 2023
    Assignee: View, Inc.
    Inventors: Mark A. Collins, Ronald M. Parker, Robert T. Rozbicki, Dhairya Shrivastava
  • Publication number: 20230294384
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Application
    Filed: April 13, 2023
    Publication date: September 21, 2023
    Inventors: Ronald M. Parker, Anshu Ajit Pradhan, Abhishek Anant Dixit, Douglas Samuel Dauson
  • Patent number: 11740528
    Abstract: This disclosure provides spacers for smart windows. In one aspect, a window assembly includes a first substantially transparent substrate having an optically switchable device on a surface of the first substrate. The optically switchable device includes electrodes. A first electrode of the electrodes has a length about the length of a side of the optically switchable device. The window assembly further includes a second substantially transparent substrate a metal spacer between the first and the second substrates. The metal spacer has a substantially rectangular cross section, with one side of the metal spacer including a recess configured to accommodate the length of the first electrode such that there is no contact between the first electrode and the metal spacer. A primary seal material bonds the first substrate to the metal spacer and bonds the second substrate to the metal spacer.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: August 29, 2023
    Assignee: View, Inc.
    Inventors: Yashraj Bhatnagar, Trevor Frank, Fabian Strong, Sridhar Karthik Kailasam, Robert Babcock, Ronald M. Parker, Robert T. Rozbicki
  • Patent number: 11698566
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: July 11, 2023
    Assignee: View, Inc.
    Inventors: Sridhar Karthik Kailasam, Dhairya Shrivastava, Zhiwei Cai, Robert T. Rozbicki, Dane Thomas Gillaspie, Todd William Martin, Anshu A. Pradhan, Ronald M. Parker
  • Patent number: 11654659
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: May 23, 2023
    Assignees: View, Inc., Corning Incorporated
    Inventors: Ronald M. Parker, Anshu A. Pradhan, Abhishek Anant Dixit, Douglas Dauson
  • Publication number: 20230144015
    Abstract: Methods, apparatus, and systems for mitigating pinhole defects in optical devices such as electrochromic windows. One method mitigates a pinhole defect in an electrochromic device by identifying the site of the pinhole defect and obscuring the pinhole to make it less visually discernible.
    Type: Application
    Filed: September 30, 2022
    Publication date: May 11, 2023
    Applicant: View, Inc.
    Inventors: Robin Sean Friedman, Sridhar Karthik Kailasam, Rao P. Mulpuri, Ronald M. Parker, Ronald A. Powell, Anshu Ajit Pradhan, Robert Tad Rozbicki, Vinod Khosla
  • Patent number: 11623433
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 11, 2023
    Assignees: View, Inc., Corning Incorporated
    Inventors: Ronald M. Parker, Anshu A. Pradhan, Abhishek Anant Dixit, Douglas Dauson
  • Patent number: 11550197
    Abstract: Methods, apparatus, and systems for mitigating pinhole defects in optical devices such as electrochromic windows. One method mitigates a pinhole defect in an electrochromic device by identifying the site of the pinhole defect and obscuring the pinhole to make it less visually discernible. In some cases, the pinhole defect may be the result of mitigating a short-related defect.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: January 10, 2023
    Assignee: View, Inc.
    Inventors: Robin Friedman, Sridhar K. Kailasam, Rao Mulpuri, Ronald M. Parker, Ronald A. Powell, Anshu A. Pradhan, Robert T. Rozbicki, Vinod Khosla
  • Patent number: 11516113
    Abstract: Embodiments disclosed herein relate to systems and methods for network slicers. Network slicers can receive creation request messages and select network slices based on policies. A network slicer can indicate to next hop routers that it has lower routing costs in order to receive messages, and inspect the received messages to identify creation request messages. A network slicer can indicate to a DNS server that it has a higher priority than other network elements, and receive creation request messages based on the higher priority. New creation request messages can be sent to the selected network slices based on received creation request messages. The network can also create and send appropriate response messages to the creation request to establish future communications with the selected network slice.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: November 29, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Haibo Qian, Srinivasan Muralidharan, Kenton Perry Nickell, Ronald M. Parker, Fred Rink
  • Publication number: 20220259096
    Abstract: Methods for protecting transparent electronically conductive layers on glass substrates are described herein. Methods include depositing a sacrificial coating during deposition of the transparent electronically conductive layer, before packing the glass substrate for storage or shipping, after unpacking glass substrates from a stack of glass substrates, and/or after a washing operation prior to fabricating an electrochromic stack on the transparent electronically conductive layer. Methods also include removing the sacrificial coating during a washing operation, during tempering, or prior to depositing an electrochromic stack by, e.g., heating the sacrificial coating or exposing the sacrificial coating to an inert plasma.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Inventors: Ronald M. Parker, Anshu A. Pradhan, Abhishek Anant Dixit, Douglas Dauson
  • Publication number: 20220221765
    Abstract: This disclosure provides spacers for smart windows. In one aspect, a window assembly includes a first substantially transparent substrate having an optically switchable device on a surface of the first substrate. The optically switchable device includes electrodes. A first electrode of the electrodes has a length about the length of a side of the optically switchable device. The window assembly further includes a second substantially transparent substrate a metal spacer between the first and the second substrates. The metal spacer has a substantially rectangular cross section, with one side of the metal spacer including a recess configured to accommodate the length of the first electrode such that there is no contact between the first electrode and the metal spacer. A primary seal material bonds the first substrate to the metal spacer and bonds the second substrate to the metal spacer.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 14, 2022
    Inventors: Yashraj Bhatnagar, Trevor Frank, Fabian Strong, Sridhar Karthik Kailasam, Robert Babcock, Ronald M. Parker, Robert T. Rozbicki
  • Publication number: 20220150181
    Abstract: Systems and methods for efficient database management of non-transitory readable media, including a memory configured to store information associated with service instance requests across a plurality of distributed network resources and a processor configured to receive a service instance request, determine the first native domain object associated with the service instance request, allocate the plurality of network resources to a plurality of distributed worker instances dependent upon a first native domain object, assign the first service instance request to a first worker instance that includes a microservice instance that define service instance blocks to execute the request, and a service instance block manager configured to manage the first service instance request in conjunction with subsequent service instance requests associated with the plurality of worker instances, track running and completed requests, and allocate resources for similar requests across the distributed network nodes.
    Type: Application
    Filed: October 4, 2021
    Publication date: May 12, 2022
    Inventors: Ronald M. PARKER, Jeremy BROWN, Haibo QIAN
  • Patent number: 11259169
    Abstract: A system for storing and managing subscription information for a plurality of subscribers in a mobile communications network is provided. The system comprises a first database, a second database, and one or more processors. The processors are configured to receive a request relating to a subscriber, determine that the first database lacks a desired record relating to the subscriber, retrieve the desired record from the second database, write the retrieved desired record to the first database, and perform one or more functions related to the desired record according to the request. In some embodiments, the one or more processors are configured to predict a time of a potential occurrence of one or more future connections related to the plurality of subscribers and before the predicted time, copy one or more records related to the plurality of subscribers from the second database to the first database.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: February 22, 2022
    Assignee: MICROSOFT TECHNOLGY LICENSING, LLC
    Inventors: Srinivas Kappla, Prasasth Palnati, Ronald M. Parker