Patents by Inventor Ronald N. Miles

Ronald N. Miles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110150260
    Abstract: A miniature microphone comprising a diaphragm compliantly suspended over an enclosed air volume having a vent port is provided, wherein an effective stiffness of the diaphragm with respect to displacement by acoustic vibrations is controlled principally by the enclosed air volume and the port. The microphone may be formed using silicon microfabrication techniques and has sensitivity to sound pressure substantially unrelated to the size of the diaphragm over a broad range of realistic sizes. The diaphragm is rotatively suspend for movement through an arc in response to acoustic vibrations, for example by beams or tabs, and has a surrounding perimeter slit separating the diaphragm from its support structure. The air volume behind the diaphragm provides a restoring spring force for the diaphragm. The microphone's sensitivity is related to the air volume, perimeter slit, and stiffness of the diaphragm and its mechanical supports, and not the area of the diaphragm.
    Type: Application
    Filed: March 3, 2011
    Publication date: June 23, 2011
    Applicant: The Research Foundation of State University of New York
    Inventor: Ronald N. Miles
  • Patent number: 7903835
    Abstract: A miniature microphone comprising a diaphragm compliantly suspended over an enclosed air volume having a vent port is provided, wherein an effective stiffness of the diaphragm with respect to displacement by acoustic vibrations is controlled principally by the enclosed air volume and the port. The microphone may be formed using silicon microfabrication techniques and has sensitivity to sound pressure substantially unrelated to the size of the diaphragm over a broad range of realistic sizes. The diaphragm is rotatively suspend for movement through an arc in response to acoustic vibrations, for example by beams or tabs, and has a surrounding perimeter slit separating the diaphragm from its support structure. The air volume behind the diaphragm provides a restoring spring force for the diaphragm. The microphone's sensitivity is related to the air volume, perimeter slit, and stiffness of the diaphragm and its mechanical supports, and not the area of the diaphragm.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: March 8, 2011
    Assignee: The Research Foundation of State University of New York
    Inventor: Ronald N. Miles
  • Patent number: 7876924
    Abstract: A rigid, flat plate diaphragm for an acoustic device is illustrated. The internal supporting structure of the diaphragm provides a combination of torsional and translational stiffeners, which resemble a number of crossbars. These stiffeners brace and support the diaphragm motion, thus causing its response to not be adversely affected by fabrication stresses and causing it to be very similar in dynamic response to an ideal flat plate operating in a frequency range that extends well beyond the audible.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: January 25, 2011
    Assignee: The Research Foundation of State University of New York
    Inventors: Ronald N. Miles, Weili Cui
  • Patent number: 7826629
    Abstract: A microphone having an optical component for converting the sound-induced motion of the diaphragm into an electronic signal using a diffraction grating. The microphone with inter-digitated fingers is fabricated on a silicon substrate using a combination of surface and bulk micromachining techniques. A 1 mm×2 mm microphone diaphragm, made of polysilicon, has stiffeners and hinge supports to ensure that it responds like a rigid body on flexible hinges. The diaphragm is designed to respond to pressure gradients, giving it a first order directional response to incident sound. This mechanical structure is integrated with a compact optoelectronic readout system that displays results based on optical interferometry.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: November 2, 2010
    Assignee: State University New York
    Inventors: Ronald N. Miles, F. Levent Degertekin
  • Publication number: 20090016557
    Abstract: A differential microphone having a perimeter slit formed around the microphone diaphragm that replaces the backside hole previously required in conventional silicon, micromachined microphones. The differential microphone is formed using silicon fabrication techniques applied only to a single, front face of a silicon wafer. The backside holes of prior art microphones typically require that a secondary machining operation be performed on the rear surface of the silicon wafer during fabrication. This secondary operation adds complexity and cost to the micromachined microphones so fabricated. Comb fingers forming a portion of a capacitive arrangement may be fabricated as part of the differential microphone diaphragm.
    Type: Application
    Filed: January 31, 2006
    Publication date: January 15, 2009
    Inventor: Ronald N. Miles
  • Publication number: 20080101641
    Abstract: A miniature microphone comprising a diaphragm compliantly suspended over an enclosed air volume having a vent port is provided, wherein an effective stiffness of the diaphragm with respect to displacement by acoustic vibrations is controlled principally by the enclosed air volume and the port. The microphone may be formed using silicon microfabrication techniques and has sensitivity to sound pressure substantially unrelated to the size of the diaphragm over a broad range of realistic sizes. The diaphragm is rotatively suspend for movement through an arc in response to acoustic vibrations, for example by beams or tabs, and has a surrounding perimeter slit separating the diaphragm from its support structure. The air volume behind the diaphragm provides a restoring spring force for the diaphragm. The microphone's sensitivity is related to the air volume, perimeter slit, and stiffness of the diaphragm and its mechanical supports, and not the area of the diaphragm.
    Type: Application
    Filed: October 18, 2006
    Publication date: May 1, 2008
    Applicant: The Research Foundation of State University of New York
    Inventor: Ronald N. Miles
  • Patent number: 4425980
    Abstract: Beam dampers comprising a stiff, lightweight, elongate beam and layer of viscoelastic material located along an attachment flange of the beam are disclosed. The flanges of the beam is attached by the layer of viscoelastic material to the skin of a structure whose skin vibrations are to be damped. While a beam having a cross-sectional I-shape is preferred, other cross-sectional shapes can be used, such as L, Z, U and T-shapes. Regardless of their shapes, the beam acts as a constraining element for the viscoelastic attachment layer. The beam is oriented such that it is stiff in a plane transverse to the plane of the skin, resulting in thickness deformation of the layer of viscoelastic material (rather than shear deformation) converting vibration energy into heat.
    Type: Grant
    Filed: December 14, 1981
    Date of Patent: January 17, 1984
    Assignee: The Boeing Company
    Inventor: Ronald N. Miles