Patents by Inventor Ronald Naderer
Ronald Naderer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240375296Abstract: The invention relates to a pneumatic actuator. According to one embodiment, the actuator has the following: a housing having a pressure chamber; a rod inserted into the pressure chamber of the housing from the outside; a rod seal which is located around the rod and seals the pressure chamber; and a rod guide which is mounted on the housing and is designed to guide the rod along the longitudinal axis thereof. There is no piston arranged in the pressure chamber. Rather, an unsealed annular gap is present inside the pressure chamber between the rod and an inner wall of the pressure chamber, so that a gas pressure prevailing in the pressure chamber can propagate in the entire pressure chamber as far as the rod seal.Type: ApplicationFiled: April 29, 2022Publication date: November 14, 2024Inventor: Ronald Naderer
-
Patent number: 12138722Abstract: The invention relates to an extraction device for a robot-assisted machine tool for surface processing. According to an exemplary embodiment, the extraction device comprises a housing with a vacuum nozzle and an outlet for connection of a hose. The extraction device also has a suspension that connects the housing to a mounting plate and is mounted on the mounting plate so as to be pivotable about an axis. A counterweight is connected to the suspension such that the counterweight substantially balances out the weight of the housing relative to the axis.Type: GrantFiled: October 17, 2018Date of Patent: November 12, 2024Assignee: FerRobotics Compliant Robot Technology GmbHInventor: Ronald Naderer
-
Publication number: 20240173858Abstract: An embodiment relates to a handling apparatus with a linear actuator acting between a first flange connectable to a manipulator and a second flange to which a tool, or a machine tool with a tool, can be mounted. The linear actuator exerts a force on the second flange, or an end stop, in accordance with a control variable. The device further comprises a force sensor coupled between the second flange and the tool and configured to measure a force exerted by the handling apparatus on the tool upon contact between the tool and a surface. A control unit comprises a state observer configured to determine an estimated value for the force exerted by the handling apparatus on the tool based on the control variable.Type: ApplicationFiled: March 22, 2022Publication date: May 30, 2024Inventor: Ronald Naderer
-
Publication number: 20230415301Abstract: Various embodiments relate to a machine tool, in particular for the robot-assisted machining of workpieces. The machine tool comprises a drive and a first shaft with a mounting point for a first tool and a second shaft with a mounting point for a second tool. The drive is coupled to the first shaft directly or indirectly via a first freewheel coupling and to the second shaft directly or indirectly via a second freewheel coupling such that the drive drives the first or second shaft on the basis of the rotational direction. The invention additionally relates to a corresponding method for the robot-assisted machining of a workpiece using machine tool.Type: ApplicationFiled: November 30, 2021Publication date: December 28, 2023Inventor: Ronald Naderer
-
Patent number: 11780099Abstract: Described is an apparatus for robot-aided grinding, comprising the following: a manipulator, a linear actuator, and a grinding machine which includes a rotating grinding tool and is connected to the manipulator via the linear actuator. The apparatus further comprises a protective cover that partially surrounds the rotating grinding tool, the rotating grinding tool protruding from the protective cover at least on a first side. An adjusting mechanism is provided which connects the protective cover to the grinding machine and is designed to adjust the position of the protective cover in relation to the grinding machine.Type: GrantFiled: April 4, 2017Date of Patent: October 10, 2023Assignee: FerRobotics Compliant Robot Technology GmbHInventor: Ronald Naderer
-
Patent number: 11752626Abstract: An apparatus for automated contact tasks and a related method are described. The apparatus includes a mechanical interface for connecting the apparatus to a manipulator, a holder for receiving a tool and being movable in relation to the mechanical interface, at least one actuator for positioning the holder in relation to the mechanical interface, a sensor unit that senses the actuator force provided by the at least one actuator, and a control unit that sets the actuator force to a desired minimum force to press the holder against a stop, while there is no contact between the tool and a surface, and detects contact when the holder moves in relation to the mechanical interface in opposition to the direction of the desired minimum force. The control unit further regulates the actuator force according to a pre-programmed contact force time-characteristic, when contact between the tool and the surface has been detected.Type: GrantFiled: January 26, 2021Date of Patent: September 12, 2023Assignee: FerRobotics Compliant Robot Technology GmbHInventors: Ronald Naderer, Paolo Ferrara, Andreas Rohrhofer
-
Patent number: 11707814Abstract: The invention relates to a grinding machine, which is suitable for a robot-supported grinding process. According to one embodiment, the grinding machine has a housing, a motor arranged in the interior of the housing, a fan wheel arranged on a motor shaft of the motor in the interior of the housing, and a support plate coupled to the motor shaft for receiving a grinding disc. The support plate has openings for intake of grinding dust into the interior of the housing. The grinding machine furthermore has an outlet arranged in a wall of the housing for exhausting the grinding dust out of the interior of the housing and a non-rerun valve arranged in the wall of the housing. The non-return valve enables an to escape from the interior of the housing, but prevents intake of air into the interior of the housing.Type: GrantFiled: April 19, 2018Date of Patent: July 25, 2023Assignee: FerRobotics Compliant Robot Technology GmbHInventor: Ronald Naderer
-
Publication number: 20230182320Abstract: A rapid clamping system for mounting a tool or a machine tool on a manipulator is described. According to an exemplary embodiment, the rapid clamping system comprises the following: a clamping chuck with a base plate which is designed to be mounted on a flange which can be positioned by a manipulator; a tool holder which is designed for mounting on a machine tool, wherein the tool holder has a mounting plate which, in a locked state, lies against the base plate of the clamping chuck; two or more pins which are designed, in a mounted state, to align the mounting plate on the base plate and to prevent a movement of the mounting plate relative a toggle-type fastener which is designed to lock the tool holder on the base plate of the clamping chuck, wherein, in the locked state, the elastic element is deformed and brings about a pretensioning force between the base plate and the mounting plate.Type: ApplicationFiled: April 22, 2021Publication date: June 15, 2023Inventor: Ronald Naderer
-
Publication number: 20230030445Abstract: The invention relates to a device with a spindle (10) for a machine tool, with a tool holder (30) and a driver ring (20) that is rotationally fixed on the spindle (10) and can be displaced along a rotational axis of the spindle (10). The spindle (10) and the tool holder (30) comprise matching faces which are designed to form a frictionally engaged connection when assembled. The opposing faces of the tool holder (30) and of the driver ring (20) have matching contours (21, 33) so that the driver ring (20) can engage on the tool holder (30).Type: ApplicationFiled: December 17, 2020Publication date: February 2, 2023Inventor: Ronald Naderer
-
Publication number: 20220331933Abstract: The invention relates to a device with a machine tool and a braking device, the machine tool having an eccentrically supported, rotatable backing pad for receiving a tool. According to one embodiment, the braking device has a frame, which is attached to the machine tool; a spring, a first end of which is fixed on the frame; and a lever, which is connected to a second end of the spring. The braking device also has an actuator, which is designed to move the lever, wherein in the event of a movement of the lever, the spring is compressed and a part of the lever is pressed against the backing pad of the machine tool.Type: ApplicationFiled: May 6, 2020Publication date: October 20, 2022Inventors: Ronald Naderer, Georg Pree
-
Publication number: 20220314442Abstract: A device for robot-assisted machining of surfaces is described below. According to an example, the device has a retainer with a base plate designed for mounting on a manipulator and has an assembly suspended on the retainer, the assembly comprising a machine tool. The retainer has a tilt mechanism which couples the assembly to the retainer in such a way that the assembly can be tilted relative to the base plate about two axes of rotation, wherein the two axes of rotation can intersect with one another and run through the assembly below the base plate.Type: ApplicationFiled: June 4, 2020Publication date: October 6, 2022Inventor: Ronald Naderer
-
Publication number: 20220266422Abstract: A device for automatically removing a grinding wheel from a grinding machine mounted on a manipulator is described. According to one embodiment, the device has the following: a support plate with a surface for depositing a grinding wheel; a movable clamping element that is raised in a first position with respect to the support plate; an actuator that is coupled to the clamping element and is configured to move the clamping element into a second position in which the clamping element is pressed against the support plate such that the grinding wheel is clamped between the support plate and clamping element; and a release element that is arranged in such a way relative to the support plate that the release element is actuated when the grinding wheel is placed on the surface of the support plate and is pressed against the latter.Type: ApplicationFiled: June 24, 2020Publication date: August 25, 2022Inventors: Ronald Naderer, Jakob Schinnerl
-
Publication number: 20220193857Abstract: One exemplary embodiment relates to a device for the robot-assisted machining of surfaces. According to one example, the device has a carrier structure, a motor, a linear actuator, and a machining head. The machining head is coupled to the carrier structure by means of the linear actuator and has a drive shaft for directly or indirectly driving a rotatable tool. The device also has a flexible shaft, which couples a motor shaft of the motor to the drive shaft of the machining head.Type: ApplicationFiled: April 17, 2020Publication date: June 23, 2022Inventor: Ronald Naderer
-
Publication number: 20220143837Abstract: An apparatus for the robot-assisted machining of surfaces is described. In accordance with one embodiment, the device comprises the following: a support which can be mounted on a manipulator, a machining device with a tool (e.g. a grinding disc) and a linear actuator for adjusting the relative position of a tool in relation to the support. The apparatus further has a maintenance unit comprising a swiveling bracket. The bracket is swivel-mounted on the support such that, by swiveling the bracket, the maintenance unit can be positioned at least partially before the tool.Type: ApplicationFiled: January 21, 2020Publication date: May 12, 2022Inventor: Ronald Naderer
-
Publication number: 20220063048Abstract: An apparatus includes: a receiving surface configured to receive a stack of grinding discs; a frame arranged substantially parallel to the receiving surface so that the stack of grinding discs is positioned between the receiving surface and the frame, the frame only partially overlapping an outer rim of a topmost grinding disc of the stack of grinding discs; and a mechanical pretensioning unit coupled with the frame such that a defined force is exerted by the frame on the stack of grinding discs.Type: ApplicationFiled: November 9, 2021Publication date: March 3, 2022Inventor: Ronald Naderer
-
Patent number: 11260537Abstract: The invention relates to a machine tool for robot-assisted surface finishing. According to one embodiment, the machine tool comprises a first support plate and a second support plate. The first support plate is designed for mounting on a manipulator. An output shaft for receiving a rotatable tool is mounted on the second support plate. The machine tool additionally comprises a linear actuator that acts between the first support plate and the second support plate, as well as a motor which is mounted on the first support plate. The machine tool additionally comprises a telescopic shaft with a first shaft portion and a second shaft portion that can be displaced relative to said first shaft portion. The first shaft portion is coupled to a motor shaft of the motor, and the second shaft portion as mounted on the second support plate. The telescopic shaft is coupled to the output shaft by means of a gear mechanism.Type: GrantFiled: September 26, 2017Date of Patent: March 1, 2022Assignee: FERROBOTICS COMPLIANT ROBOT TECHNOLOGY GMBHInventor: Ronald Naderer
-
Patent number: 11203093Abstract: An apparatus includes a frame, a separating plate connected to the frame, a sensor aimed at the separating plate, and a support surface connected to the frame. The separating plate and the support surface are coupled with the frame so as to allow for a relative movement between the separating plate and the support surface in a first direction. The separating plate and the support surface are arranged such that when a grinding disc rests against the support surface and when the separating plate and the grinding disc move towards each other, at least one first edge of the separating plate is pushed over grinding disc. The sensor is arranged such that when the separating plate is pushed over the grinding disc, the grinding disc is between the sensor and the separating plate.Type: GrantFiled: April 3, 2017Date of Patent: December 21, 2021Assignee: FERROBOTICS COMPLIANT ROBOT TECHNOLOGY GMBHInventor: Ronald Naderer
-
Publication number: 20210362292Abstract: The invention relates to a grinding machine, which is suitable for a robot-supported grinding process. According to one embodiment, the grinding machine has a housing, a motor arranged in the interior of the housing, a fan wheel arranged on a motor shaft of the motor in the interior of the housing, and a support plate coupled to the motor shaft for receiving a grinding disc. The support plate has openings for intake of grinding dust into the interior of the housing. The grinding machine furthermore has an outlet arranged in a wall of the housing for exhausting the grinding dust out of the interior of the housing and a non-rerun valve arranged in the wall of the housing. The non-return valve enables an to escape from the interior of the housing, but prevents intake of air into the interior of the housing.Type: ApplicationFiled: April 19, 2018Publication date: November 25, 2021Inventor: Ronald Naderer
-
Patent number: 11135729Abstract: The invention relates to a shaft coupling. According to one embodiment, the shaft coupling comprises a first coupling part with a shaft and a conical shaft section. A tool (e.g. a grinding disc, a drill, etc.) can be fixed to a first end of the shaft, and a shaft collar is arranged on a second end of the shaft. The shaft coupling additionally comprises a second coupling part which has a conical hub into which the conical shaft section of the first coupling part can be introduced in order to form a tapered seat. The second coupling part additionally has a securing element which can be moved transversely to the rotational axis of the shaft coupling such that the securing element can engage with the shaft collar. At least one spring is arranged in the shaft coupling such that the spring generates a spring force which acts on the tapered seat in the axial direction when the securing element is engaged and biases said tapered seat.Type: GrantFiled: September 13, 2018Date of Patent: October 5, 2021Assignee: Ferrobotics Compliant Robot Technology GmbHInventor: Ronald Naderer
-
Publication number: 20210146535Abstract: An apparatus for automated contact tasks and a related method are described. The apparatus includes a mechanical interface for connecting the apparatus to a manipulator, a holder for receiving a tool and being movable in relation to the mechanical interface, at least one actuator for positioning the holder in relation to the mechanical interface, a sensor unit that senses the actuator force provided by the at least one actuator, and a control unit that sets the actuator force to a desired minimum force to press the holder against a stop, while there is no contact between the tool and a surface, and detects contact when the holder moves in relation to the mechanical interface in opposition to the direction of the desired minimum force. The control unit further regulates the actuator force according to a pre-programmed contact force time-characteristic, when contact between the tool and the surface has been detected.Type: ApplicationFiled: January 26, 2021Publication date: May 20, 2021Inventors: Ronald Naderer, Paolo Ferrara, Andreas Rohrhofer