Patents by Inventor Ronald Quan

Ronald Quan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250096762
    Abstract: A system is provided to analyze distortion in an electronic or electromechanical device, which may include testing with one or more modulated signals and/or with one or more demodulators. In one embodiment a change in pitch (or frequency) is measured at an output of the device. One or more signals from a demodulator output may be measured for an amplitude, noise, phase, aliasing, spurious signal, and/or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Also frequency and/or phase response can be measured with the presence of a de-sensing signal and or near overload condition of the device under test. Another system is provided to analyze modulation index differences between input and output signals for a test signal including modulation. Another system includes providing a nested or layered modulated signal and/or a nested or layered demodulation apparatus or method.
    Type: Application
    Filed: September 23, 2024
    Publication date: March 20, 2025
    Inventor: Ronald Quan
  • Publication number: 20250088396
    Abstract: Methods and apparatuses for providing a signal sideband signal via one or more switching method or apparatus. Pulse width modulation is utilized and high efficiency of amplification is provided via a switch mode amplifier. DC restoration may provide for improved carrier suppression. Also subtraction of complementary pulse width modulated signals provides for a multiplier circuit or a multiplier function. A nonlinear carrier signal coupled to a pulsewidth modulator provides for improved amplitude modulation linearity and/or reduced sideband distortion.
    Type: Application
    Filed: September 4, 2024
    Publication date: March 13, 2025
    Inventor: Ronald Quan
  • Publication number: 20240380374
    Abstract: A system is provided to analyze cross-modulation distortion in audio devices, which may include testing with audio frequencies. One or more distortion signals from the audio device may be measured for an amplitude, phase, and or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the audio device can induce a time varying cross-modulation distortion signal from an output of the audio device. Utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion. Frequency and or phase response can be measured with the presence of a de-sensing signal and or another signal that induce near slew rate limiting or near overload condition of a device. Another system is provided to analyze modulation index differences between input and output signals for a test signal including modulation.
    Type: Application
    Filed: July 8, 2024
    Publication date: November 14, 2024
    Inventor: Ronald Quan
  • Patent number: 12107559
    Abstract: A system is provided to analyze distortion in an electronic or electromechanical device, which may include testing with one or more modulated signals and/or with one or more demodulators. In one embodiment a change in pitch (or frequency) is measured at an output of the device. One or more signals from a demodulator output may be measured for an amplitude, noise, phase, aliasing, spurious signal, and/or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the device can induce a cross-modulation distortion signal (or time varying cross-modulation distortion signal) from an output of the device. Also utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: October 1, 2024
    Inventor: Ronald Quan
  • Patent number: 12035113
    Abstract: A system is provided to analyze cross-modulation distortion in audio devices, which may include testing with audio frequencies. One or more distortion signals from the audio device may be measured for an amplitude, phase, and or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the audio device can induce a time varying cross-modulation distortion signal from an output of the audio device. Also utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion. Also frequency and or phase response can be measured with the presence of a de-sensing signal and or another signal that induce near slew rate limiting or near overload condition of the device under test. Another system is provided to analyze modulation index differences between input and output signals for a test signal including modulation.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: July 9, 2024
    Inventor: Ronald Quan
  • Publication number: 20240094394
    Abstract: In certain examples, methods and apparatuses, such as circuits, are directed to scanning in a field of view (FoV) by using a pattern that improves sensing in a region of interest (RoI) within the FoV. In one example, a signal having multiple frequency components and a scan-pattern design are used, with a balanced or optimized set of attributes including a sampling density attribute, to scan a RoI in a FoV by sampling or traversing the RoI more times than other regions in the FoV. In more specific examples, circuitry finds the scan-pattern design based on an algorithm that processes different parameters involving at least one of amplitude and phase and processes a. number of different frequency components related to or including the multiple frequency components, wherein the number of different frequency components is from three to a threshold limit whereat processing different frequency components provides negligible improvement.
    Type: Application
    Filed: January 27, 2022
    Publication date: March 21, 2024
    Inventors: Zhanghao Sun, Ronald Quan, Olav Solgaard
  • Publication number: 20240007808
    Abstract: A system is provided to analyze cross-modulation distortion in audio devices, which may include testing with audio frequencies. One or more distortion signals from the audio device may be measured for an amplitude, phase, and or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the audio device can induce a time varying cross-modulation distortion signal from an output of the audio device. Also utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion. Also frequency and or phase response can be measured with the presence of a de-sensing signal and or another signal that induce near slew rate limiting or near overload condition of the device under test. Another system is provided to analyze modulation index differences between input and output signals for a test signal including modulation.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Inventor: Ronald Quan
  • Publication number: 20230378924
    Abstract: A system is provided to analyze distortion in an electronic or electromechanical device, which may include testing with one or more modulated signals and/or with one or more demodulators. In one embodiment a change in pitch (or frequency) is measured at an output of the device. One or more signals from a demodulator output may be measured for an amplitude, noise, phase, aliasing, spurious signal, and/or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the device can induce a cross-modulation distortion signal (or time varying cross-modulation distortion signal) from an output of the device. Also utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 23, 2023
    Inventor: Ronald Quan
  • Publication number: 20230236292
    Abstract: Certain examples are directed to circuitry and methods involving adaptive scanning of a target area, by use of a scanning output controlled by a multiple-axis scanner, within a selected region of interest (RoI) in a field of view (FoV) as a function of a first drive signal having a first set of one or more frequency components and of a second drive signal having a second set of one or more frequency components. One or more aspects of at least the first drive signal is modulated to produce a plurality of drive signals including the modulated first drive signal, and the drive signals at the multiple-axis scanner are used to: control the scanning output, cause the scanning output to traverse the selected RoI more times than other portions of the FoV and spatially sample the target area via a higher concentrations of samples in the RoI.
    Type: Application
    Filed: January 24, 2023
    Publication date: July 27, 2023
    Inventors: Zhanghao Sun, Ronald Quan, Olav Solgaard, Sandra Manosalvas-Kjono
  • Publication number: 20220271724
    Abstract: A system is provided to analyze distortion in an electronic or electromechanical device, which may include testing with one or more modulated signals and/or with one or more demodulators. In one embodiment a change in pitch (or frequency) is measured at an output of the device. One or more signals from a demodulator output may be measured for an amplitude, noise, phase, aliasing, spurious signal, and/or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the device can induce a cross-modulation distortion signal (or time varying cross-modulation distortion signal) from an output of the device. Also utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 25, 2022
    Inventor: Ronald Quan
  • Patent number: 11425518
    Abstract: A system is provided to analyze cross-modulation distortion in audio devices, which may include testing with audio frequencies. One or more distortion signals from the audio device may be measured for an amplitude, phase, and or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the audio device can induce a time varying cross-modulation distortion signal from an output of the audio device. Also utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion. Also frequency and or phase response can be measured with the presence of a de-sensing signal and or another signal that induce near slew rate limiting or near overload condition of the device under test.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: August 23, 2022
    Inventor: Ronald Quan
  • Patent number: 11418152
    Abstract: A number of biasing circuits for amplifiers including voltage controlled amplifier is presented. Also a number of field effect transistor circuits include voltage controlled attenuators or voltage controlled processing circuits. Example circuits include modulators, lower distortion variable voltage controlled resistors, sine wave to triangle wave converters, and or servo controlled biasing circuits.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: August 16, 2022
    Inventor: Ronald Quan
  • Patent number: 11381211
    Abstract: A system is provided to analyze frequency (or phase) modulation distortion in an audio device, which may include testing with audio frequencies. In one embodiment a change in pitch (or frequency) is measured at an output of the audio device. One or more distortion signals from the audio device may be measured for an amplitude, phase, and or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the audio device can induce a time varying cross-modulation distortion signal (or static cross-modulation distortion signal) from an output of the audio device. Also utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion. Also frequency and or phase response can be measured with the presence of a de-sensing signal and or another signal that induce near slew rate limiting or near overload condition of the device under test.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: July 5, 2022
    Inventor: Ronald Quan
  • Publication number: 20220182019
    Abstract: A number of biasing circuits for amplifiers including voltage controlled amplifier is presented. Also a number of field effect transistor circuits include voltage controlled attenuators or voltage controlled processing circuits. Example circuits include modulators, lower distortion variable voltage controlled resistors, sine wave to triangle wave converters, and or servo controlled biasing circuits.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 9, 2022
    Inventor: Ronald Quan
  • Publication number: 20220089432
    Abstract: Aspects are directed to a MEMS device configurable to receive signals from a first, a second, a third, and a fourth signal source operating at a first, a second, a third, and a fourth frequency, respectively. The MEMS device may be configured to combine the first signal with the second signal generating a first combined signal, and to combine the third signal with the fourth signal generating a second combined signal. The first combined signal may be coupled to the first terminal of the MEMS device while the second combined signal may be coupled to the second terminal of the MEMS device. The first common terminal may be configured to produce an output associated with the second and fourth frequencies. The MEMS device may be further configured to derive from the produced output a signal indicative of nonlinearities or of changes in capacitance related to the MEMS device.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Inventors: Sandra Manosalvas-Kjono, Ronald Quan, Olav Solgaard, Zhanghao Sun
  • Patent number: 11192779
    Abstract: Aspects are directed to a MEMS device configurable to receive signals from a first, a second, a third, and a fourth signal source operating at a first, a second, a third, and a fourth frequency, respectively. The MEMS device may be configured to combine the first signal with the second signal generating a first combined signal, and to combine the third signal with the fourth signal generating a second combined signal. The first combined signal may be coupled to the first terminal of the MEMS device while the second combined signal may be coupled to the second terminal of the MEMS device. The first common terminal may be configured to produce an output associated with the second and fourth frequencies. The MEMS device may be further configured to derive from the produced output a signal indicative of nonlinearities or of changes in capacitance related to the MEMS device.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: December 7, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sandra Manosalvas-Kjono, Ronald Quan, Olav Solgaard, Zhanghao Sun
  • Patent number: 11177786
    Abstract: A number of field effect transistor circuits include voltage controlled attenuators or voltage controlled processing circuits. Example circuits include modulators, lower distortion variable voltage controlled resistors, sine wave to triangle wave converters, and or servo controlled biasing circuits.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 16, 2021
    Inventor: Ronald Quan
  • Publication number: 20210344316
    Abstract: A number of field effect transistor circuits include voltage controlled attenuators or voltage controlled processing circuits. Example circuits include modulators, lower distortion variable voltage controlled resistors, sine wave to triangle wave converters, and or servo controlled biasing circuits.
    Type: Application
    Filed: May 4, 2020
    Publication date: November 4, 2021
    Inventor: Ronald Quan
  • Publication number: 20210314716
    Abstract: A system is provided to analyze cross-modulation distortion in audio devices, which may include testing with audio frequencies. One or more distortion signals from the audio device may be measured for an amplitude, phase, and or frequency modulation effect. In another embodiment a musical signal may be used as a test signal. Providing additional test signals to the audio device can induce a time varying cross-modulation distortion signal from an output of the audio device. Also utilizing at least one additional filter, filter bank, demodulator and or frequency converter and or frequency multiplier provides extra examination of distortion. Also frequency and or phase response can be measured with the presence of a de-sensing signal and or another signal that induce near slew rate limiting or near overload condition of the device under test.
    Type: Application
    Filed: June 18, 2021
    Publication date: October 7, 2021
    Inventor: Ronald Quan
  • Patent number: 11128262
    Abstract: A number of low voltage vacuum tube circuits include using supply voltages well below the manufacturer's recommended voltages applied to the plate or screen grid. Some of the tube circuits operate at near zero plate and or screen grid voltages. Other low voltage circuits have forward biasing on one or more grids that are normally biased at a non positive voltage or a grid that is normally connected a cathode. Substantially lower supply voltages allow for example, the filament supply to also supply voltage to the plate and or grid for providing an output signal at a grid and or a plate. Also one or more voltage controlled resistors circuits are shown that include near zero plate (e.g., supply) voltage.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: September 21, 2021
    Inventor: Ronald Quan