Patents by Inventor Ronald T. Raines

Ronald T. Raines has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9738664
    Abstract: Protease inhibitors, particularly aspartyl protease inhibitors, and more particularly HIV protease inhibitors which are boronated to enhance activity or to enhance entry into cells. Compounds, prodrugs and salts thereof of this invention contain phenylboronate groups, in particular p -B(OH)2-phenyl groups, benzoxaborole groups or borono-pyridyl groups or analogous groups in which the boronate group is protected. Methods for treating AIDS and ARC as well as providing a method for treating or preventing HIV infection.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: August 22, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ronald T. Raines, Ian Windsor, Michael Palte, John Lukesh
  • Patent number: 9732101
    Abstract: Methods for enhancing cellular uptake of cargo molecules by boronating the cargo molecule, particularly with one or more phenylboronic acid groups. Boronation reagents for reversible boronation of cargo molecules, particularly, cargo molecules having one or more amino groups are provided.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: August 15, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ronald T. Raines, Thomas P. Smith
  • Patent number: 9630916
    Abstract: Catalysts of protein-disulfide isomerization of formula: where R1 is hydrogen or —COR4, where R4 is an optionally substituted aliphatic group or an optionally substituted aryl group; R2 is hydrogen or —CO—R5, where R5 is alkyl having 1-8 carbon atoms, an alkenyl having 3-8 carbon atoms or a phenyl, benzyl, phenethyl or naphthyl group; and R3 is hydrogen or alkyl group having 1-3 carbon atoms. Protein folding buffers comprising one or more of the above compounds. Method of catalyzing, in vivo or in vitro, the isomerization of disulfide linkages in a protein or peptide employing above catalysts. Method of forming, in vivo or in vitro, disulfide linkages in a protein or peptide employing above catalysts.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: April 25, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ronald T. Raines, John C. Lukesh, III
  • Publication number: 20160297752
    Abstract: Methods and reagents for esterification of biological molecules including proteins, polypeptides and peptides. Diazo compounds of formula I: where R is hydrogen, an alkyl, an alkenyl or an alkynyl, RA represents 1-5 substituents on the indicated phenyl ring and RM is an organic group, which includes a label, a cell penetrating group, a cell targeting group, or a reactive group or latent reactive group for reaction to bond to a label, a cell penetrating group, or a cell targeting group, among other organic groups are useful for esterification of biological molecules. Also provided are diazo compounds which are bifunctional and trifunctional coupling reagents as well as reagents for the synthesis of compounds of formula I.
    Type: Application
    Filed: April 7, 2016
    Publication date: October 13, 2016
    Inventors: Ronald T. RAINES, Kalie MIX
  • Publication number: 20160280701
    Abstract: Biheteroaryl dicarboxylates and esters, and salts thereof which are useful as modulators of CP4H activity and more particularly as inhibitors of CP4H. Compounds of formula: and salts thereof where: X is S, O, NH, or NR, where R is an alkyl group having 1-3 carbon atoms; R1 and R2 independently are —OR7, or —NHSO2R8, where R7 is selected from: hydrogen, alkyl, alkenyl, alkoxyalkyl, —R?—CO—R?, —R?—CO—O—R?, —CO—R?, —R?—O—CO—R?, —R?—CO—NR?, —CO—NR?, or —R?—O—CO—NR?, and R8 is selected from hydrogen, alkyl, aryl, arylalkyl; R3, R4 and R6 independently are hydrogen, alkyl, alkoxy, alkenyl, alkenoxy, halo alkyl, haloalkenyl, halogen, hydroxyl, hydroxyalkyl, hydroxyalkenyl, aryl, aryloxy, arylalkyl or arylalkyloxy; R5 is hydrogen, halogen, alkyl having 1-3 carbon atoms, or alkoxy having 1-3 carbon atoms; —R?— is a divalent straight chain or branched alkylene, and —R? is an alkyl, alkenyl, arylalkyl, or aryl group. Methods for inhibition of CP4H in vivo and in vitro.
    Type: Application
    Filed: March 28, 2016
    Publication date: September 29, 2016
    Inventors: Ronald T. RAINES, James Vasta
  • Publication number: 20160122366
    Abstract: Protease inhibitors, particularly aspartyl protease inhibitors, and more particularly HIV protease inhibitors which are boronated to enhance activity or to enhance entry into cells. Compounds, prodrugs and salts thereof of this invention contain phenylboronate groups, in particular p-B(OH)2-phenyl groups, benzoxaborole groups or borono-pyridyl groups or analogous groups in which the boronate group is protected.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 5, 2016
    Inventors: Ronald T. Raines, Ian Windsor, Michael Palte, John Lukesh
  • Publication number: 20160083706
    Abstract: Cargo molecules carrying one or more phenylboronate moieties useful for cellular uptake of the cargo molecules. Phenylboronate can be ligated, crosslinked or otherwise bonded to the cargo molecules. Cargo molecules include peptides and proteins. The phenylboronate groups are optionally conjugated to the cargo molecule via linking moieties that can be selectively cleaved, such cleavable linkers can allow the phenylboronate groups to be removed from the cargo molecule after the boronated cargo molecule is introduced into the cell. The invention includes certain phenylboronates which are boronation reagents, certain boronated oligopeptides and certain boronated peptides and proteins. The invention also includes kits for enhancing cellular uptake of cargo molecules by boronation with one or more phenylboronates or boronated oligopeptides.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 24, 2016
    Inventors: Ronald T. RAINES, Gregory Ellis, Michael Palte
  • Publication number: 20160075764
    Abstract: Novel collagen-mimetic peptides are disclosed comprising the formula (Xaa-Yaa-Gly)n, where the amino acid at one of the Xaa positions is substituted with a homocysteine residue. Also disclosed are multi-stranded novel collagen-mimetic peptides comprising a first strand as described above that is covalently bonded with a disulfide bridge to a second strand comprising the formula (Xaa-Yaa-Gly)m, where the amino acid at one of the Yaa positions is substituted with a cysteine residue. Disulfide formation between the terminal thiol sulfur of the homocysteine residue of the first strand and the terminal thiol sulfur of the cysteine residue of the second strand reveals unstrained bridges that enhance the structure and substantially improve the stability of collagen triple helices as compared to other possible disulfide or thioether bridges.
    Type: Application
    Filed: September 11, 2015
    Publication date: March 17, 2016
    Inventors: Ronald T. Raines, Ismet C. Tanrikulu
  • Publication number: 20160067342
    Abstract: Methods and reagents for enhancing cellular uptake of a cargo molecule by covalently bonding optionally-substituted fluorenyl groups to the cargo molecules, where cellular uptake includes at least partial uptake into the cytosol. Useful fluorenylation reagents include those of formula: and salts thereof where variables are as defined. Cargo molecules include peptides and proteins. Also provided are fluorenylated cargo molecules, including fluorenylated peptides and proteins.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 10, 2016
    Inventors: Ronald T. RAINES, Kristen A. ANDERSEN
  • Publication number: 20160052878
    Abstract: Catalysts of protein-disulfide isomerization of formula: where R1 is hydrogen or —COR4, where R4 is an optionally substituted aliphatic group or an optionally substituted aryl group; R2 is hydrogen or —CO—R5, where R5 is alkyl having 1-8 carbon atoms, an alkenyl having 3-8 carbon atoms or a phenyl, benzyl, phenethyl or naphthyl group; and R3 is hydrogen or alkyl group having 1-3 carbon atoms. Protein folding buffers comprising one or more of the above compounds. Method of catalyzing, in vivo or in vitro, the isomerization of disulfide linkages in a protein or peptide employing above catalysts. Method of forming, in vivo or in vitro, disulfide linkages in a protein or peptide employing above catalysts.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 25, 2016
    Inventors: Ronald T. Raines, John C. Lukesh, III
  • Patent number: 9255260
    Abstract: This invention relates to altered forms of members of the RNase A superfamily. An RNase A can be modified to be cytotoxic by altering its amino acid sequence so that it is not bound easily by the ribonuclease inhibitor while still retaining catalytic properties. While earlier work had identified some modifications to RNase A that would result in cytotoxicity, the use of the FADE algorithm for molecular interaction analysis has led to several other locations that were candidates for modification. Some of those modifications did result in RNase A variants with increase cytotoxicity.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: February 9, 2016
    Assignees: Wisconsin Alumni Research Foundation, The Regents of the University of California
    Inventors: Ronald T. Raines, Julie C. Mitchell, Thomas J. Rutkoski
  • Publication number: 20160024122
    Abstract: Methods for enhancing cellular uptake of cargo molecules by boronating the cargo molecule, particularly with one or more phenylboronic acid groups. Boronation reagents for reversible boronation of cargo molecules, particularly, cargo molecules having one or more amino groups are provided.
    Type: Application
    Filed: July 27, 2015
    Publication date: January 28, 2016
    Inventors: Ronald T. RAINES, Thomas P. SMITH
  • Patent number: 9234048
    Abstract: Methods for enhancing cellular uptake of cargo molecules by boronating the cargo molecule, particularly with one or more phenylboronic acid groups. Cellular uptake includes at least partial uptake into the cytosol. Boronation includes ligating, crosslinking or otherwise bonding one or more phenylboronic acids substituted to contain a reactive group to a cargo molecule. Boronation also includes ligating, crosslinking or otherwise bonding a phenylboronated oligopeptide to a cargo molecule. The phenylboronate groups are optionally conjugated to the cargo molecule via linking moieties that can be selectively cleaved, such cleavable linkers can allow the phenylboronate groups to be removed from the cargo molecule after the boronated cargo molecule is introduced into the cell. The invention includes certain phenylboronates which are boronation reagents, certain boronated oligopeptides and certain boronated peptides and proteins.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: January 12, 2016
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Ronald T. Raines, Gregory Ellis, Michael Palte
  • Patent number: 9234191
    Abstract: Cytotoxic variants of human ribonuclease 1 (RNase 1) identified through analysis of the interaction between RNase 1 and the human ribonuclease inhibitor (hRI) as defined by the three dimensional (3-D) atomic structure of the RNase1 hRI complex are disclosed. Also disclosed is the 3-D structure of the hRI.RNase 1 complex and methods for designing and using the RNase 1 variants.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 12, 2016
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ronald T. Raines, George N. Phillips, Jr., R. Jeremy Johnson, Jason G. McCoy
  • Publication number: 20150307544
    Abstract: Dithioamine reducing agents useful for the reduction of disulfide bonds. The reducing agents of this invention are useful, for example, to reduce disulfide bonds, particularly in proteins, or to prevent the formation of disulfide bonds, particularly in proteins and other biological molecules. Reducing agents of this invention can be employed to regulate protein function in proteins in which a sulfhydryl group is associated with biological activity. Reducing agents of this invention can prevent inactivation of a given protein or enhance activation of a given protein or other biological molecule in vitro and/or in vivo. Reducing agents of this invention can prevent or reduce oxidation of cysteine residues in proteins and prevent the formation of reduced activity protein dimers (or other oligomers). Reducing agents of this invention are useful and suitable for application in a variety of biological applications, particularly as research and synthetic reagents.
    Type: Application
    Filed: July 7, 2015
    Publication date: October 29, 2015
    Inventors: Ronald T. RAINES, John LUKESH
  • Patent number: 9090662
    Abstract: Dithioamine reducing agents useful for the reduction of disulfide bonds. The reducing agents of this invention are useful, for example, to reduce disulfide bonds, particularly in proteins, or to prevent the formation of disulfide bonds, particularly in proteins and other biological molecules. Reducing agents of this invention are useful and suitable for application in a variety of biological applications, particularly as research and synthetic reagents. The invention provides S-acylated dithioamines which can be selectively activated reducing agents by removal of the S-acyl groups enzymatically or chemically. The invention further provides dithiane precursors of thioamino reducing agents. The invention provides dithioamine reducing agents, S-acylated dithioamines and dithianes which are immobilized on surfaces, including among others, glass, quartz, microparticles, nanoparticles and resins.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: July 28, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ronald T. Raines, John Lukesh
  • Patent number: 9085590
    Abstract: Di- and trivalent protecting groups for organoboronic acids including phenyl boronic acids, benzoxaboroles and benzoxaborins, which are prepared from precursor compounds of formula I: where: R1 is a methyl, ethyl or a —(CH2)n—OH group, where n is 2 or 3; R2 and R3 are independently methyl or ethyl groups; R4 and R5 are independently halogens or hydrogens; R6 and R7 are independently hydrogens, halogens, or nitro groups; and R8 and R9 are independently hydrogens, halogens or nitro groups or R8 and R9 together with a portion of the naphthalene ring form a 5-member ring, where when R1 is —CH2—CH2—OH then the protecting group is a trivalent protecting group. Also provided are protected organoboronic acids including protected phenyl boronic acids, benzoxaboroles and benzoxaborins. Also provides are methods for conducting reactions employing protected organoboronic acids.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 21, 2015
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Ronald T. Raines, Brett VanVeller, Matthew Aronoff
  • Patent number: 8962001
    Abstract: A class of anionic oligomers and polymers that function for inhibition of nucleases, particularly RNase. Specific inhibitors include mixtures of oligomers of vinyl sulfate. Methods for inhibition or inactivation of one or more nucleases in vitro which comprises the step of contacting the one or more nucleases in a biological medium with one or more of the anionic oligomeric or polymeric inhibitors of this invention. Kits for carrying out a biological procedure, biological reaction and/or a biological assay containing one or more inhibitors of this invention. The use of oligomers and/or polymers of this invention as additives in buffers or reagents. The inhibitors of the invention can also be attached to surfaces to provide for removal of nucleases from media, solutions or other liquids in contact with the solid.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: February 24, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ronald T. Raines, Bryan D. Smith, Matthew B. Soellner, David M. Lynn
  • Publication number: 20140275601
    Abstract: Di- and trivalent protecting groups for organoboronic acids including phenyl boronic acids, benzoxaboroles and benzoxaborins, which are prepared from precursor compounds of formula I: where: R1 is a methyl, ethyl or a —(CH2)n—OH group, where n is 2 or 3; R2 and R3 are independently methyl or ethyl groups; R4 and R5 are independently halogens or hydrogens; R6 and R7 are independently hydrogens, halogens, or nitro groups; and R8 and R9 are independently hydrogens, halogens or nitro groups or R8 and R9 together with a portion of the naphthalene ring form a 5-member ring, where when R1 is —CH2—CH2—OH then the protecting group is a trivalent protecting group. Also provided are protected organoboronic acids including protected phenyl boronic acids, benzoxaboroles and benzoxaborins. Also provides are methods for conducting reactions employing protected organoboronic acids.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Ronald T. Raines, Brett VanVeller, Matthew Aronoff
  • Patent number: 8834918
    Abstract: A composition for delivery of a molecule into a cell is provided. The composition includes a protein transduction domain that is conjugated to the molecule which is incorporated into a multilayered film. Preferably, the protein transduction domain is a cationic protein transduction domain. More preferably, the cationic protein transduction domain is nonaarginine, and the multilayered film includes polyelectrolyte multilayers. When the composition is presented to a cell, the multilayered film dissolves or erodes in physiological media, and the molecule is delivered into the cell.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: September 16, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David M. Lynn, Ronald T. Raines, Christopher M. Jewell, Stephen M. Fuchs, Ryan M. Flessner