Patents by Inventor Ronald W. Davis

Ronald W. Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8383348
    Abstract: The invention is directed to novel methods of multiplexing nucleic acid reactions, including amplification, detection and genotyping. The invention relies on the use of precircle probes that are circularized in the presence of the corresponding target nucleic acids, cleaved, and then amplified.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: February 26, 2013
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Thomas D. Willis, Paul Hardenbol, Maneesh Jain, Viktor Stolc, Mostafa Ronaghi, Ronald W. Davis
  • Publication number: 20130029851
    Abstract: A calorimeter device includes various components located on a common substrate. A first (calorimeter) integrated chip device is located on the substrate. This first device has a first microfluidic channel that has first side and a second side. A first heat sensing circuit is located on the first side of the first channel and a second heat sensing circuit is located on the second side of the channel, opposite the first side and facing the first heat sensing circuit. A second integrated chip device is located on the substrate and proximal to the first device. The second device includes a second microfluidic channel having a fourth side and fifth side. A third heat sensing circuit is located on the third side of the second channel. A fourth heat sensing circuit is located on the fourth side of the channel, opposite the third side and facing the third heat sensing circuit.
    Type: Application
    Filed: May 25, 2012
    Publication date: January 31, 2013
    Inventors: Hesaam Esfandyarpour, Ronald W. Davis
  • Patent number: 8313907
    Abstract: Methods and apparatus for direct detection of chemical reactions are provided. In a preferred embodiment, electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The target molecule is preferably DNA. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 20, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Publication number: 20120283107
    Abstract: Methods for direct detection of chemical reactions are provided. Electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal. This technique may be adapted to other reaction determinations, such as enzymatic reactions, other electrode configurations, and other amplifying circuits.
    Type: Application
    Filed: March 29, 2012
    Publication date: November 8, 2012
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Publication number: 20120183963
    Abstract: The present invention provides systems, apparatuses, and methods to detect the presence of fetal cells when mixed with a population of maternal cells in a sample and to test fetal abnormalities, i.e. aneuploidy. In addition, the present invention provides methods to determine when there are insufficient fetal cells for a determination and report a non-informative case. The present invention involves quantifying regions of genomic DNA from a mixed sample. More particularly the invention involves quantifying DNA polymorphisms from the mixed sample.
    Type: Application
    Filed: March 28, 2012
    Publication date: July 19, 2012
    Inventors: Roland Stoughton, Ravi Kapur, Mehmet Toner, Daniel Shoemaker, Ronald W. Davis, Barb Ariel Cohen
  • Publication number: 20120142016
    Abstract: A nanopore device capable of single molecule detection is described. The nanopores are formed in thin, rigid membranes and modified by a sputtered metal that forms an overhang during application. The overhang causes the pore to be narrower in a certain region, allowing passage of only a single molecule through the pore at a time, or binding to a biomolecule on the pore to be detected by a change in ionic current flow through the nanopore. Embodiments include a silicon nitride membrane formed on a silicon substrate and having a nanopore drilled with a focused ion beam system, followed by gold sputtering onto the membrane. Devices are formed with one or more nanopores and chambers having electrodes on either side of the nanopore.
    Type: Application
    Filed: September 27, 2007
    Publication date: June 7, 2012
    Inventors: Mostafa Ronaghi, Amir Ali Haj Hossein Talasaz, Ronald W. Davis
  • Patent number: 8168389
    Abstract: The present invention provides systems, apparatuses, and methods to detect the presence of fetal cells when mixed with a population of maternal cells in a sample and to test fetal abnormalities, e.g. aneuploidy. The present invention involves labeling regions of genomic DNA in each cell in said mixed sample with different labels wherein each label is specific to each cell and quantifying the labeled regions of genomic DNA from each cell in the mixed sample. More particularly the invention involves quantifying labeled DNA polymorphisms from each cell in the mixed sample.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: May 1, 2012
    Assignees: The General Hospital Corporation, GPB Scientific, LLC, Verinata Health, Inc.
    Inventors: Daniel Shoemaker, Ravi Kapur, Mehmet Toner, Roland Stoughton, Ronald W. Davis
  • Patent number: 8137912
    Abstract: The present invention relates to methods for detecting, enriching, and analyzing rare cells that are present in the blood, e.g. fetal cells. The invention further features methods of analyzing rare cell(s) to determine the presence of an abnormality, disease or condition in a subject, e.g. a fetus by analyzing a cellular sample from the subject.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: March 20, 2012
    Assignees: The General Hospital Corporation, GPB Scientific, LLC, Verinata Health, Inc.
    Inventors: Ravi Kapur, Mehmet Toner, Roland Stoughton, Daniel Shoemaker, Ronald W. Davis
  • Publication number: 20120065091
    Abstract: The invention is directed to novel methods of multiplexing nucleic acid reactions, including amplification, detection and genotyping. The invention relies on the use of precircle probes that are circularized in the presence of the corresponding target nucleic acids, cleaved, and then amplified.
    Type: Application
    Filed: August 9, 2011
    Publication date: March 15, 2012
    Inventors: Thomas D. Willis, Paul Hardenbol, Maneesh Jain, Viktor Stolc, Mostafa Ronaghi, Ronald W. Davis
  • Publication number: 20120045828
    Abstract: Described here is an automated robotic device that isolates circulating tumor cells (CTCs) or other biological structures with extremely high purity. The device uses powerful magnetic rods covered in removable plastic sleeves. These rods sweep through blood samples, capturing, e.g., cancer cells labeled with antibodies linked to magnetically responsive particles such as superparamagnetic beads. Upon completion of the capturing protocol, the magnetic rods undergo several rounds of washing, thereby removing all contaminating blood cells. The captured target cells are released into a final capture solution by removing the magnetic rods from the sleeves. Additionally, cells captured by this device show no reduced viability when cultured after capture. Cells are captured in a state suitable for genetic analysis. Also disclosed are methods for single cell analysis. Being robotic allows the device to be operated with high throughput.
    Type: Application
    Filed: October 28, 2011
    Publication date: February 23, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Stefanie S. Jeffrey, Michael N. Mindrinos, R. Fabian Pease, Ashley Ann Powell, AmirAli Hajhossein Talasaz
  • Publication number: 20110312518
    Abstract: Embodiments of the invention are related to microfluidic devices for detecting or determining the concentration of biomolecules in an analyte comprising: a channel, wherein a surface of said channel is fabricated to be functionalized with at least one molecule selected to interact with a biomolecule, said channel being configured to interact with a microsphere, wherein a surface of said microsphere is fabricated to be functionalized with at least one same or different molecule selected to interact with said biomolecule; a second channel in fluid communication with said first channel; a system to move fluid containing said microsphere through said first and second channels; and a system to measure a change in electrical impedance or optical microscopy across said second channel as said microsphere moves through said second channel. Other embodiments concern related devices, and methods of making and using.
    Type: Application
    Filed: March 23, 2011
    Publication date: December 22, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Mehdi Javanmard, Michael N. Mindrinos, Janine A. Mok
  • Patent number: 8071395
    Abstract: Described here is an automated robotic device that isolates circulating tumor cells (CTCs) or other biological structures with extremely high purity. The device uses powerful magnetic rods covered in removable plastic sleeves. These rods sweep through blood samples, capturing, e.g., cancer cells labeled with antibodies linked to magnetically responsive particles such as superparamagnetic beads. Upon completion of the capturing protocol, the magnetic rods undergo several rounds of washing, thereby removing all contaminating blood cells. The captured target cells are released into a final capture solution by removing the magnetic rods from the sleeves. Additionally, cells captured by this device show no reduced viability when cultured after capture. Cells are captured in a state suitable for genetic analysis. Also disclosed are methods for single cell analysis. Being robotic allows the device to be operated with high throughput.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 6, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Stefanie S. Jeffrey, Michael N. Mindrinos, R. Fabian Pease, Ashley Ann Powell, AmirAli Hajhossein Talasaz
  • Publication number: 20110281739
    Abstract: Methods and apparatus for direct detection of chemical reactions are provided. In a preferred embodiment, electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The target molecule is preferably DNA. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal.
    Type: Application
    Filed: June 28, 2011
    Publication date: November 17, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Patent number: 8012756
    Abstract: Methods and apparatus for direct detection of chemical reactions are provided. In a preferred embodiment, electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The target molecule is preferably DNA. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: September 6, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Patent number: 7993880
    Abstract: The invention is directed to novel methods of multiplexing nucleic acid reactions, including amplification, detection and genotyping. The invention relies on the use of precircle probes that are circularized in the presence of the corresponding target nucleic acids, cleaved, and then amplified.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 9, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Thomas D. Willis, Paul Hardenbol, Maneesh Jain, Viktor Stolc, Mostafa Ronaghi, Ronald W. Davis
  • Patent number: 7989185
    Abstract: A rapid diagnostic assay for influenza virus, particularly avian influenza and more particularly H5N1, is described. The assay is based on amplification of a significant portion of the hemagglutinin (HA) gene and sequencing of several loci within the HA gene, using techniques which can obtain real time sequence information from multiple sites of a target DNA, in particular pyrosequencing and bioluminescence regenerative cycle. The assay contemplates the use of information-rich subsequences within the HA gene, e.g., (1) a glycosylation sequon; (2) receptor binding site; and (3) HA1/HA2 cleavage site. Other subsequences for sequencing include strain and clade markers, which vary among H5N1 strains.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: August 2, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nader Pourmand, Lisa Diamond, Jochen Kumm, Ronald W. Davis
  • Publication number: 20110136127
    Abstract: Methods and compositions for detecting an analyte in a sample are provided. In practicing the subject methods, a sample is combined with at least a pair of proximity probes that each include an analyte binding domain and a nucleic acid domain. The resultant mixture is then contacted with a pair of asymmetric nucleic acid connectors. Proximity dependent connector mediated interaction between the nucleic acid domains of the proximity probes is then detected to determine the presence of the analyte in the sample. Also provided are kits and systems for practicing the subject methods.
    Type: Application
    Filed: January 24, 2011
    Publication date: June 9, 2011
    Inventors: Simon Fredriksson, Ronald W. Davis
  • Publication number: 20110086393
    Abstract: A method for producing a single stranded DNA (ssDNA) molecule of a defined length and sequence is disclosed. This method enables the preparation of, inter alia, probes of greater length than can be chemically synthesized. The method starts with a double stranded molecule, such as genomic, double stranded DNA (dsDNA) from any organism. A fragment of the starting molecule (dsDNA) is amplified by specific primers engineered to introduce cleavage sites on either side of the desired sequence. Cleavage steps on the amplified, engineered fragment are combined with a phosphate removal step, thereby creating a construct that can be digested with an exonuclease without damage to the desired ssDNA. Probes, which hybridize with large gaps between the ends of the probes, are also disclosed.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael Mindrinos, Sujatha Krishnakumar, Ronald W. Davis
  • Patent number: 7914987
    Abstract: Methods and compositions for detecting an analyte in a sample are provided. In practicing the subject methods, a sample is combined with at least a pair of proximity probes that each include an analyte binding domain and a nucleic acid domain. The resultant mixture is then contacted with a pair of asymmetric nucleic acid connectors. Proximity dependent connector mediated interaction between the nucleic acid domains of the proximity probes is then detected to determine the presence of the analyte in the sample. Also provided are kits and systems for practicing the subject methods.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: March 29, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Simon Fredriksson, Ronald W. Davis
  • Patent number: 7897747
    Abstract: A method for producing a single stranded DNA (ssDNA) molecule of a defined length and sequence is disclosed. This method enables the preparation of, inter alia, probes of greater length than can be chemically synthesized. The method starts with a double stranded molecule, such as genomic, double stranded DNA (dsDNA) from any organism. A fragment of the starting molecule (dsDNA) is amplified by specific primers engineered to introduce cleavage sites on either side of the desired sequence. Cleavage steps on the amplified, engineered fragment are combined with a phosphate removal step, thereby creating a construct that can be digested with an exonuclease without damage to the desired ssDNA. Probes, which hybridize with large gaps between the ends of the probes, are also disclosed.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 1, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael Mindrinos, Sujatha Krishnakumar, Ronald W. Davis