Patents by Inventor Ronald W. Stites

Ronald W. Stites has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240010575
    Abstract: A doped substrate having a substrate comprising at least one of a glass material, a single crystal material, a poly-crystalline material, a ceramic material, or a semiconductor material. The doped substrate includes a dopant comprising one or more transition metals, one or more rare earth elements, or a combination of both, the doped substrate characterized in that a spectral laser output of the doped substrate exhibits a nominally single frequency having a linewidth less than about 5 nm.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 11, 2024
    Applicant: Government of the United States as Represented by the Secretary of the Air Force
    Inventors: Gary Cook, Ronald W. Stites
  • Patent number: 11814326
    Abstract: A method of forming a doped substrate comprises heating a substrate comprising a layer of a dopant on at least one surface to a predetermined temperature; applying a predetermined degree of isostatic external pressure on the surface of said substrate at said predetermined temperature for a time sufficient to induce thermal migration of the dopant into the substrate to provide a doped substrate; and removing the isostatic pressure and cooling the doped substrate to about room temperature. The substrate is a glass material, a single crystal material, a poly-crystalline material, a ceramic material, or a semiconductor material, and the substrate may be optically transparent. The dopant comprises one or more transition metals, one or more rare earth elements, or a combination of both. The layer of a dopant comprises one or more segregated layers of distinct chemical species. The isostatic pressure and elevated temperature may be applied simultaneously or sequentially.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: November 14, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Gary Cook, Ronald W. Stites
  • Patent number: 11292967
    Abstract: A method of treating a substrate comprises applying an electric field to a substrate comprising a layer of a dopant on at least one surface; applying a predetermined temperature to the substrate in the electric field; applying the electric field and the predetermined temperature for a time sufficient to induce migration of the dopant into the substrate to provide a doped substrate; and removing the electric field and returning the doped substrate to about room temperature, wherein the doped substrate is characterized in that a spectral laser output of the doped substrate exhibits a nominally single frequency having a linewidth less than about 5 nm. The substrate may be a glass material, a single crystal material, a poly-crystalline material, a ceramic material, or a semiconductor material, which may be optically transparent. Before treatment, the substrate may be an undoped substrate or a doped substrate.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: April 5, 2022
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Gary Cook, Ronald W. Stites
  • Publication number: 20210277306
    Abstract: A method of treating a substrate comprises applying an electric field to a substrate comprising a layer of a dopant on at least one surface; applying a predetermined temperature to the substrate in the electric field; applying the electric field and the predetermined temperature for a time sufficient to induce migration of the dopant into the substrate to provide a doped substrate; and removing the electric field and returning the doped substrate to about room temperature, wherein the doped substrate is characterized in that a spectral laser output of the doped substrate exhibits a nominally single frequency having a linewidth less than about 5 nm. The substrate may be a glass material, a single crystal material, a poly-crystalline material, a ceramic material, or a semiconductor material, which may be optically transparent. Before treatment, the substrate may be an undoped substrate or a doped substrate.
    Type: Application
    Filed: March 2, 2021
    Publication date: September 9, 2021
    Inventors: Gary Cook, Ronald W. Stites
  • Publication number: 20210163370
    Abstract: A method of forming a doped substrate comprises heating a substrate comprising a layer of a dopant on at least one surface to a predetermined temperature; applying a predetermined degree of isostatic external pressure on the surface of said substrate at said predetermined temperature for a time sufficient to induce thermal migration of the dopant into the substrate to provide a doped substrate; and removing the isostatic pressure and cooling the doped substrate to about room temperature. The substrate is a glass material, a single crystal material, a poly-crystalline material, a ceramic material, or a semiconductor material, and the substrate may be optically transparent. The dopant comprises one or more transition metals, one or more rare earth elements, or a combination of both. The layer of a dopant comprises one or more segregated layers of distinct chemical species. The isostatic pressure and elevated temperature may be applied simultaneously or sequentially.
    Type: Application
    Filed: April 3, 2017
    Publication date: June 3, 2021
    Inventors: Gary Cook, Ronald W. Stites
  • Patent number: 10968389
    Abstract: A method of treating a substrate comprises applying an electric field to a substrate comprising a layer of a dopant on at least one surface; applying a predetermined temperature to the substrate in the electric field; applying the electric field and the predetermined temperature for a time sufficient to induce migration of the dopant into the substrate to provide a doped substrate; and removing the electric field and returning the doped substrate to about room temperature, wherein the doped substrate is characterized in that a spectral laser output of the doped substrate exhibits a nominally single frequency having a linewidth less than about 5 nm. The substrate may be a glass material, a single crystal material, a poly-crystalline material, a ceramic material, or a semiconductor material, which may be optically transparent. Before treatment, the substrate may be an undoped substrate or a doped substrate.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: April 6, 2021
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Gary Cook, Ronald W. Stites