Patents by Inventor Ronald W. Ward

Ronald W. Ward has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210162566
    Abstract: Methods of laser cutting polycrystalline diamond tables and polycrystalline diamond compacts are disclosed. Laser cutting of the polycrystalline diamond table provides an alternative to electrical-discharge machining (“EDM”), grinding with a diamond wheel, or lapping with a diamond wheel. Grinding or lapping with a diamond wheel is relatively slow and expensive, as diamond is used to remove a diamond material. EDM cutting of the polycrystalline diamond table is sometimes impractical or even impossible, particularly when the cobalt or other infiltrant or catalyst concentration within the polycrystalline diamond table is very low (e.g., in the case of a leached polycrystalline diamond table). As such, laser cutting provides a valuable alternative machining method that may be employed in various processes such as laser scribing, laser ablation, and laser lapping.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 3, 2021
    Inventors: Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett
  • Patent number: 10946500
    Abstract: Methods of laser cutting polycrystalline diamond tables and polycrystalline diamond compacts are disclosed. Laser cutting of the polycrystalline diamond table provides an alternative to electrical-discharge machining (“EDM”), grinding with a diamond wheel, or lapping with a diamond wheel. Grinding or lapping with a diamond wheel is relatively slow and expensive, as diamond is used to remove a diamond material. EDM cutting of the polycrystalline diamond table is sometimes impractical or even impossible, particularly when the cobalt or other infiltrant or catalyst concentration within the polycrystalline diamond table is very low (e.g., in the case of a leached polycrystalline diamond table). As such, laser cutting provides a valuable alternative machining method that may be employed in various processes such as laser scribing, laser ablation, and laser lapping.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: March 16, 2021
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett
  • Patent number: 9999962
    Abstract: Methods of laser cutting polycrystalline diamond tables and polycrystalline diamond compacts are disclosed. Laser cutting of the polycrystalline diamond table provides an alternative to electrical-discharge machining (“EDM”), grinding with a diamond wheel, or lapping with a diamond wheel. Grinding or lapping with a diamond wheel is relatively slow and expensive, as diamond is used to remove a diamond material. EDM cutting of the polycrystalline diamond table is sometimes impractical or even impossible, particularly when the cobalt or other infiltrant or catalyst concentration within the polycrystalline diamond table is very low (e.g., in the case of a leached polycrystalline diamond table). As such, laser cutting provides a valuable alternative machining method that may be employed in various processes such as laser scribing, laser ablation, and laser lapping.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: June 19, 2018
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett
  • Publication number: 20180043508
    Abstract: Methods of laser cutting polycrystalline diamond tables and polycrystalline diamond compacts are disclosed. Laser cutting of the polycrystalline diamond table provides an alternative to electrical-discharge machining (“EDM”), grinding with a diamond wheel, or lapping with a diamond wheel. Grinding or lapping with a diamond wheel is relatively slow and expensive, as diamond is used to remove a diamond material. EDM cutting of the polycrystalline diamond table is sometimes impractical or even impossible, particularly when the cobalt or other infiltrant or catalyst concentration within the polycrystalline diamond table is very low (e.g., in the case of a leached polycrystalline diamond table). As such, laser cutting provides a valuable alternative machining method that may be employed in various processes such as laser scribing, laser ablation, and laser lapping.
    Type: Application
    Filed: October 4, 2017
    Publication date: February 15, 2018
    Inventors: Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett
  • Patent number: 9718168
    Abstract: Embodiments disclosed herein involve polycrystalline diamond (“PCD”) tables and polycrystalline diamond compacts (“PDCs”) that include PCD tables as well as methods and apparatuses for manufacturing thereof. Some embodiments include a canister assembly that may be used in a high-pressure/high-temperature (“HPHT”) process or other heating process to manufacture the PCD tables and/or the PDCs.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: August 1, 2017
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Debkumar Mukhopadhyay, Robert J. Farr, Ronald W. Ward, Edwin Sean Cox, Damon Bart Crockett, Daniel Preston Wilding
  • Publication number: 20160230471
    Abstract: Embodiments of methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) by partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDC embodiments including at least one stress relieving partition are also disclosed.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Publication number: 20160186805
    Abstract: Bearing assemblies, apparatuses, and motor assemblies using the same are disclosed. In an embodiment, a bearing assembly may include a plurality of superhard bearing elements distributed circumferentially about an axis. Each of the superhard bearing elements may include a bearing surface. At least one of the plurality of superhard bearing elements may include at least one texture feature that may be formed in a lateral surface thereof. The bearing assembly may also include a support ring that carries the superhard bearing elements.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Inventors: S. Barrett Peterson, Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Edward Christensen, Damon B. Crockett, Mohammad N. Sani
  • Patent number: 9334694
    Abstract: Methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) include partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDCs may include at least one stress relieving partition.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: May 10, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Patent number: 9297411
    Abstract: Bearing assemblies, apparatuses, and motor assemblies using the same are disclosed. In an embodiment, a bearing assembly may include a plurality of superhard bearing elements distributed circumferentially about an axis. Each of the superhard bearing elements may include a bearing surface. At least one of the plurality of superhard bearing elements may include at least one texture feature that may be formed in a lateral surface thereof. The bearing assembly may also include a support ring that carries the superhard bearing elements.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 29, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: S Barrett Peterson, Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Publication number: 20150239097
    Abstract: Methods of laser cutting polycrystalline diamond tables and polycrystalline diamond compacts are disclosed. Laser cutting of the polycrystalline diamond table provides an alternative to electrical-discharge machining (“EDM”), grinding with a diamond wheel, or lapping with a diamond wheel. Grinding or lapping with a diamond wheel is relatively slow and expensive, as diamond is used to remove a diamond material. EDM cutting of the polycrystalline diamond table is sometimes impractical or even impossible, particularly when the cobalt or other infiltrant or catalyst concentration within the polycrystalline diamond table is very low (e.g., in the case of a leached polycrystalline diamond table). As such, laser cutting provides a valuable alternative machining method that may be employed in various processes such as laser scribing, laser ablation, and laser lapping.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 27, 2015
    Inventors: Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett
  • Publication number: 20150209937
    Abstract: Embodiments disclosed herein involve polycrystalline diamond (“PCD”) tables and polycrystalline diamond compacts (“PDCs”) that include PCD tables as well as methods and apparatuses for manufacturing thereof. Some embodiments include a canister assembly that may be used in a high-pressure/high-temperature (“HPHT”) process or other heating process to manufacture the PCD tables and/or the PDCs.
    Type: Application
    Filed: April 2, 2015
    Publication date: July 30, 2015
    Inventors: Debkumar Mukhopadhyay, Robert J. Farr, Ronald W. Ward, Edwin Sean Cox, Damon Bart Crockett, Daniel Preston Wilding
  • Patent number: 9062505
    Abstract: Methods of laser cutting polycrystalline diamond tables and polycrystalline diamond compacts are disclosed. Laser cutting of the polycrystalline diamond table provides an alternative to electrical-discharge machining (“EDM”), grinding with a diamond wheel, or lapping with a diamond wheel. Grinding or lapping with a diamond wheel is relatively slow and expensive, as diamond is used to remove a diamond material. EDM cutting of the polycrystalline diamond table is sometimes impractical or even impossible, particularly when the cobalt or other infiltrant or catalyst concentration within the polycrystalline diamond table is very low (e.g., in the case of a leached polycrystalline diamond table). As such, laser cutting provides a valuable alternative machining method that may be employed in various processes such as laser scribing, laser ablation, and laser lapping.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: June 23, 2015
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett
  • Patent number: 8950519
    Abstract: Methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) include partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDC embodiments may include at least one stress relieving partition.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: February 10, 2015
    Assignee: US Synthetic Corporation
    Inventors: Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Publication number: 20140366456
    Abstract: Methods of laser cutting polycrystalline diamond tables and polycrystalline diamond compacts are disclosed. Laser cutting of the polycrystalline diamond table provides an alternative to electrical-discharge machining (“EDM”), grinding with a diamond wheel, or lapping with a diamond wheel. Grinding or lapping with a diamond wheel is relatively slow and expensive, as diamond is used to remove a diamond material. EDM cutting of the polycrystalline diamond table is sometimes impractical or even impossible, particularly when the cobalt or other infiltrant or catalyst concentration within the polycrystalline diamond table is very low (e.g., in the case of a leached polycrystalline diamond table). As such, laser cutting provides a valuable alternative machining method that may be employed in various processes such as laser scribing, laser ablation, and laser lapping.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 18, 2014
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett
  • Publication number: 20140367177
    Abstract: Embodiments of methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) by partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDC embodiments including at least one stress relieving partition are also disclosed.
    Type: Application
    Filed: August 5, 2014
    Publication date: December 18, 2014
    Inventors: Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Publication number: 20140367176
    Abstract: Methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) include partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDC embodiments may include at least one stress relieving partition.
    Type: Application
    Filed: September 16, 2011
    Publication date: December 18, 2014
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Publication number: 20130156357
    Abstract: Bearing assemblies, apparatuses, and motor assemblies using the same are disclosed. In an embodiment, a bearing assembly may include a plurality of superhard bearing elements distributed circumferentially about an axis. Each of the superhard bearing elements may include a bearing surface. At least one of the plurality of superhard bearing elements may include at least one texture feature that may be formed in a lateral surface thereof. The bearing assembly may also include a support ring that carries the superhard bearing elements.
    Type: Application
    Filed: March 28, 2012
    Publication date: June 20, 2013
    Applicant: US SYNTHETIC CORPORATION
    Inventors: S. Barrett Peterson, Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani