Patents by Inventor Ronald Weimer

Ronald Weimer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060289952
    Abstract: Methods for forming a nitride barrier film layer in semiconductor devices such as gate structures, and barrier layers, semiconductor devices and gate electrodes are provided. The nitride layer is particularly useful as a barrier to boron diffusion into an oxide film. The nitride barrier layer is formed by selectively depositing silicon onto an oxide substrate as a thin layer, and then thermally annealing the silicon layer in a nitrogen-containing species or exposing the silicon to a plasma source of nitrogen to nitridize the silicon layer.
    Type: Application
    Filed: August 31, 2006
    Publication date: December 28, 2006
    Applicant: Micron Technology Inc.
    Inventor: Ronald Weimer
  • Publication number: 20060289950
    Abstract: Methods for forming a nitride barrier film layer in semiconductor devices such as gate structures, and barrier layers, semiconductor devices and gate electrodes are provided. The nitride layer is particularly useful as a barrier to boron diffusion into an oxide film. The nitride barrier layer is formed by selectively depositing silicon onto an oxide substrate as a thin layer, and then thermally annealing the silicon layer in a nitrogen-containing species or exposing the silicon to a plasma source of nitrogen to nitridize the silicon layer.
    Type: Application
    Filed: August 31, 2006
    Publication date: December 28, 2006
    Applicant: Micron Technology Inc.
    Inventor: Ronald Weimer
  • Publication number: 20060289951
    Abstract: Methods for forming a nitride barrier film layer in semiconductor devices such as gate structures, and barrier layers, semiconductor devices and gate electrodes are provided. The nitride layer is particularly useful as a barrier to boron diffusion into an oxide film. The nitride barrier layer is formed by selectively depositing silicon onto an oxide substrate as a thin layer, and then thermally annealing the silicon layer in a nitrogen-containing species or exposing the silicon to a plasma source of nitrogen to nitridize the silicon layer.
    Type: Application
    Filed: August 31, 2006
    Publication date: December 28, 2006
    Applicant: Micron Technology Inc.
    Inventor: Ronald Weimer
  • Publication number: 20060273376
    Abstract: A method is disclosed that may include forming a first layer of insulating material above a semiconducting substrate, forming an aluminum oxide layer above the first layer of insulating material, forming a plurality of spaced-apart dots of material on the aluminum oxide layer, forming a second layer of insulating material on portions of the aluminum oxide layer not covered by the spaced-apart dots of material, forming a conductive layer above the second layer of insulating material and the plurality of spaced-apart dots of material, and removing excess portions of the layer of conductive material and the second layer of insulating material.
    Type: Application
    Filed: June 6, 2005
    Publication date: December 7, 2006
    Inventors: Ronald Weimer, Christopher Hill
  • Publication number: 20060267062
    Abstract: A method used during the formation of a semiconductor device comprises providing a wafer substrate assembly comprising a plurality of digit line plug contact pads and capacitor storage cell contact pads which contact a semiconductor wafer. A dielectric layer is provided over the wafer substrate assembly and etched to expose the digit line plug contact pads, and a liner is provided in the opening. A portion of the digit line plug is formed, then the dielectric layer is etched again to expose the capacitor storage cell contact pads. A capacitor bottom plate is formed to contact the storage cell contact pads, then the dielectric layer is etched a third time using the liner and the bottom plate as an etch stop layer. A capacitor cell dielectric layer and capacitor top plate are formed which provide a double-sided container cell. An additional dielectric layer is formed, then the additional dielectric layer, cell top plate, and the cell dielectric are etched to expose the digit line plug portion.
    Type: Application
    Filed: July 31, 2006
    Publication date: November 30, 2006
    Inventors: Scott DeBoer, Ronald Weimer, John Moore
  • Publication number: 20060258157
    Abstract: The invention includes deposition methods and apparatuses which can be utilized during atomic layer deposition or chemical vapor deposition. A heated surface is provided between a stack of semiconductor substrates and a precursor inlet, and configured so that problematic side reactions occur proximate the heated surface rather than proximate the semiconductor substrates. The precursor inlet can be one of a plurality of precursor inlets, and the heated surface can be one of a plurality of heated surfaces.
    Type: Application
    Filed: May 11, 2005
    Publication date: November 16, 2006
    Inventor: Ronald Weimer
  • Publication number: 20060252207
    Abstract: The invention includes a method of forming a programmable memory device. A tunnel oxide is formed to be supported by a semiconductor substrate. A stack is formed over the tunnel oxide. The stack comprises a floating gate, dielectric mass and control gate. The stack has a top, and has opposing sidewalls extending downwardly from the top. The dielectric mass includes silicon nitride. Silicon nitride spacers are formed along sidewalls of the stack, and a silicon nitride cap is formed over a top of the stack. The silicon nitride within the dielectric mass, cap and/or sidewall spacers is formed from trichlorosilane and ammonia.
    Type: Application
    Filed: July 13, 2006
    Publication date: November 9, 2006
    Inventors: Kevin Beaman, Ronald Weimer
  • Patent number: 7129128
    Abstract: Methods for forming dielectric layers over polysilicon substrates, useful in the construction of capacitors and other semiconductor circuit components are provided. A self-limiting nitric oxide (NO) anneal of a polysilicon layer such as an HSG polysilicon capacitor electrode, at less than 800° C., is utilized to grow a thin oxide (oxynitride) layer of about 40 angstroms or less over the polysilicon layer. The NO anneal provides a nitrogen layer at the polysilicon-oxide interface that limits further oxidation of the polysilicon layer and growth of the oxide layer. The oxide layer is exposed to a nitrogen-containing gas to nitridize the surface of the oxide layer and reduce the effective dielectric constant of the oxide layer. The process is particularly useful in forming high K dielectric insulating layers such as tantalum pentoxide over polysilicon.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: October 31, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Ronald A. Weimer
  • Patent number: 7126181
    Abstract: The invention includes methods of forming circuit devices. A metal-containing material comprising a thickness of no more than 20 ? (or alternatively comprising a thickness resulting from no more than 70 ALD cycles) is formed between conductively-doped silicon and a dielectric layer. The conductively-doped silicon can be n-type silicon and the dielectric layer can be a high-k dielectric material. The metal-containing material can be formed directly on the dielectric layer, and the conductively-doped silicon can be formed directly on the metal-containing material. The circuit device can be a capacitor construction or a transistor construction. If the circuit device is a transistor construction, such can be incorporated into a CMOS assembly. Various devices of the present invention can be incorporated into memory constructions, and can be incorporated into electronic systems.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: October 24, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Denise M. Eppich, Ronald A. Weimer
  • Publication number: 20060213440
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Application
    Filed: May 9, 2006
    Publication date: September 28, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, David Kubista, Cem Basceri
  • Publication number: 20060205187
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Application
    Filed: May 9, 2006
    Publication date: September 14, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, David Kubista, Cem Basceri
  • Publication number: 20060204649
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Application
    Filed: May 4, 2006
    Publication date: September 14, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Kevin Beaman, Trung Doan, Lyle Breiner, Ronald Weimer, Er-Xuan Ping, David Kubista, Cem Basceri, Lingyi Zheng
  • Publication number: 20060196538
    Abstract: Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers are disclosed herein. In one embodiment, the system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 2, 2006
    Publication date: September 7, 2006
    Applicant: Micron Technology, Inc.
    Inventors: David Kubista, Trung Doan, Lyle Breiner, Ronald Weimer, Kevin Beaman, Er-Xuan Ping, Lingyi Zheng, Cem Basceri
  • Publication number: 20060198955
    Abstract: The present disclosure describes apparatus and methods for processing microfeature workpieces, e.g., by depositing material on a microelectronic semiconductor using atomic layer deposition. Some of these apparatus include microfeature workpiece holders that include gas distributors. One exemplary implementation provides a microfeature workpiece holder adapted to hold a plurality of microfeature workpieces. This workpiece holder includes a plurality of workpiece supports and a gas distributor. The workpiece supports are adapted to support a plurality of microfeature workpieces in a spaced-apart relationship to define a process space adjacent a surface of each microfeature workpiece. The gas distributor includes an inlet and a plurality of outlets, with each of the outlets positioned to direct a flow of process gas into one of the process spaces.
    Type: Application
    Filed: May 3, 2006
    Publication date: September 7, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Ronald Weimer, David Kubista, Kevin Beaman, Cem Basceri
  • Publication number: 20060194446
    Abstract: A method of adjusting the threshold voltage of semiconductor devices by incorporating nitride into the isolation layer so as to decrease the mobility of charge carriers and thereby increase the threshold voltage required to activate the device. The nitrogen incorporation method may comprise of decoupled plasma nitridization (DPN) and the DPN can be performed in-situ during gate oxide formation. The amount of threshold voltage can be varied by adjusting the DPN treatment time and processing parameters.
    Type: Application
    Filed: May 1, 2006
    Publication date: August 31, 2006
    Inventors: Kevin Beaman, John Moore, Ronald Weimer
  • Publication number: 20060194452
    Abstract: A method of adjusting the threshold voltage of semiconductor devices by incorporating nitride into the isolation layer so as to decrease the mobility of charge carriers and thereby increase the threshold voltage required to activate the device. The nitrogen incorporation method may comprise of decoupled plasma nitridization (DPN) and the DPN can be performed in-situ during gate oxide formation. The amount of threshold voltage can be varied by adjusting the DPN treatment time and processing parameters.
    Type: Application
    Filed: May 1, 2006
    Publication date: August 31, 2006
    Inventors: Kevin Beaman, John Moore, Ronald Weimer
  • Patent number: 7095088
    Abstract: Systems and devices are disclosed utilizing a silicon-containing barrier layer. A semiconductor device is disclosed and includes a substrate, a gate oxide, a silicon-containing barrier layer and a gate electrode. The gate oxide is formed over the substrate. The silicon-containing barrier layer is formed over the gate oxide by causing silicon atoms of a precursor layer react with a reactive agent. The gate electrode is formed over the silicon-containing barrier layer.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: August 22, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Don Carl Powell, Garry Anthony Mercaldi, Ronald A. Weimer
  • Publication number: 20060175673
    Abstract: Systems and devices are disclosed utilizing a silicon-containing barrier layer. A semiconductor device is disclosed and includes a substrate, a gate oxide, a silicon-containing barrier layer and a gate electrode. The gate oxide is formed over the substrate. The silicon-containing barrier layer is formed over the gate oxide by causing silicon atoms of a precursor layer react with a reactive agent. The gate electrode is formed over the silicon-containing barrier layer.
    Type: Application
    Filed: March 24, 2006
    Publication date: August 10, 2006
    Inventors: Don Powell, Garry Mercaldi, Ronald Weimer
  • Patent number: 7087182
    Abstract: The present invention provides a flash memory integrated circuit and a method of fabricating the same. A tunnel dielectric in an erasable programmable read only memory (EPROM) device is nitrided with a hydrogen-bearing compound, particularly ammonia. Hydrogen is thus incorporated into the tunnel dielectric, along with nitrogen. The gate stack is etched and completed, including protective sidewall spacers and dielectric cap, and the stack lined with a barrier to hydroxyl and hydrogen species. Though the liner advantageously reduces impurity diffusion through to the tunnel dielectric and substrate interface, it also reduces hydrogen diffusion in any subsequent hydrogen anneal. Hydrogen is provided to the tunnel dielectric, however, in the prior exposure to ammonia.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: August 8, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Ronald A. Weimer
  • Patent number: 7084448
    Abstract: A method used during the formation of a semiconductor device comprises providing a wafer substrate assembly comprising a plurality of digit line plug contact pads and capacitor storage cell contact pads which contact a semiconductor wafer. A dielectric layer is provided over the wafer substrate assembly and etched to expose the digit line plug contact pads, and a liner is provided in the opening. A portion of the digit line plug is formed, then the dielectric layer is etched again to expose the capacitor storage cell contact pads. A capacitor bottom plate is formed to contact the storage cell contact pads, then the dielectric layer is etched a third time using the liner and the bottom plate as an etch stop layer. A capacitor cell dielectric layer and capacitor top plate are formed which provide a double-sided container cell. An additional dielectric layer is formed, then the additional dielectric layer, cell top plate, and the cell dielectric are etched to expose the digit line plug portion.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: August 1, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Ronald A. Weimer, John T. Moore