Patents by Inventor Ronan K. McGovern

Ronan K. McGovern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240042345
    Abstract: A method for condensing a vapor uses a multi-stage bubble-column vapor mixture condenser that includes at least a first stage, a second stage, and a third stage, each with a carrier-gas inlet and outlet as well as a condensing bath and a volume of carrier gas above the condensing bath. The carrier-gas inlet of the second and third stages is in the form of a sieve plate. The first-stage condensing bath is at a temperature of 60° C. to 90° C. Carrier gas flows at a temperature above 60° C. and up to 93° C. into and through the carrier-gas inlet of the first stage, then into and through the condensing bath in the first stage, and then into and through the volume of carrier gas above the condensing bath in the first stage. The carrier gas then similarly flows through the second- and third-stage condensing baths, each of which is at least 5° C. cooler than the temperature of the condensing bath in the preceding stage.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 8, 2024
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa H. Elsharqawy
  • Patent number: 11826706
    Abstract: A reverse osmosis filtration system includes a set of two or more reverse osmosis pressure vessels coupled in series, each pressure vessel having one or more reverse osmosis membrane elements, a feed inlet, a retentate outlet, a permeate outlet. The pressure vessels are coupled so that each successive pressure vessel has (a) its feed inlet coupled to the retentate outlet of its preceding pressure vessel and (b) its permeate outlet coupled to the permeate outlet of its preceding pressure vessel. The permeate outlet of at least one pressure vessel includes a front permeate outlet and the permeate outlet of at least one other pressure vessel includes a back permeate outlet. The back permeate outlet of one pressure vessel is coupled to the front permeate outlet of a successive pressure vessel.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: November 28, 2023
    Assignee: Alfa Laval Copenhagen A/S
    Inventor: Ronan K. McGovern
  • Patent number: 11421193
    Abstract: A method for reducing beverage loss during loading of beverage into an ethanol concentration system having a set of reverse osmosis pressure vessels, each pressure vessel having a feed inlet, a retentate outlet, and a permeate outlet. The method includes feeding deaerated water into the feed inlet of a first pressure vessel, feeding the beverage into the feed inlet of the first pressure vessel, monitoring an alcohol percentage at the retentate outlet of a second pressure vessel, the second pressure vessel coupled directly or indirectly to the first pressure vessel, and coupling a retentate from the retentate outlet of the second pressure vessel to a feed tank coupled to the feed inlet of the first pressure vessel when the alcohol percentage is within a first target range of 0.5 to 18% alcohol-by-volume (ABV).
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: August 23, 2022
    Assignee: Alfa Laval Copenhagen A/S
    Inventors: Ronan K. McGovern, Grace Connors, Adam M. Weiner
  • Publication number: 20220177816
    Abstract: A high gravity non-alcoholic beverage is disclosed having an ABV between about 0.1% to about 0.8% or between about 3% to about 6%, a real extract by weight between about 15% to about 70%, and an ethyl acetate amount between about 1 to about 500 mg/l. A method for producing the high gravity non-alcoholic beverage from a starting liquid includes providing a set of reverse osmosis pressure vessels, each pressure vessel having a feed inlet, a retentate outlet, and a permeate outlet, the set having a first pressure vessel, providing the starting liquid to the feed inlet of the first pressure vessel, adding water at a blend point when ABV content in a selected one of the permeate streams exceeds ABV content of a retentate stream at the blend point, and obtaining the high gravity non-alcoholic beverage from a selected one of the retentate streams.
    Type: Application
    Filed: March 12, 2020
    Publication date: June 9, 2022
    Inventors: Ronan K. McGovern, Erin Partlan, Adam M. Weiner
  • Publication number: 20210403843
    Abstract: A method of reducing haze by creating a physically stable alcoholic beverage that has been obtained via filtration and separation processes includes receiving retentate from which water has been removed, from a reverse osmosis filter system having an initial alcoholic precursor to the alcoholic beverage in a feed stream, wherein a concentration of alcohol in the retentate has reached between about 10% and 40% by volume, cooling the retentate to a temperature between about 2 degrees below a freezing point of the retentate and a freezing point of the initial alcoholic precursor to the alcoholic beverage in the feed stream, and subjecting the retentate to a clarification process that removes particles having a size of about 0.4-0.8 microns and larger to produce a clarified retentate. The clarification process includes centrifuging, filtration using a filter, and/or forming a supernate and a precipitate and then decanting the supernate.
    Type: Application
    Filed: June 20, 2018
    Publication date: December 30, 2021
    Inventors: Ronan K. McGovern, Adam M. Weiner, Andrew Hunt, Paul Michael Thompson
  • Publication number: 20210228998
    Abstract: A multi-stage bubble-column vapor mixture condenser includes at least a first stage and a second stage. Each stage includes a condenser chamber including a carrier-gas inlet and a carrier-gas outlet and contains a condensing bath. Carrier gas bubbles from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath, to a volume of carrier gas above the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction, and the first-stage carrier-gas outlet is in fluid communication with the second-stage carrier-gas inlet to facilitate flow of the carrier gas through the condensing bath in the first-stage condenser chamber, into the volume of carrier gas above the first-stage condensing bath, and then through the condensing bath in the second-stage condenser chamber.
    Type: Application
    Filed: April 17, 2021
    Publication date: July 29, 2021
    Applicants: Massachusetts Institute of Technology, King Fahd University of Petroleum & Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa H. Elsharqawy
  • Publication number: 20210163863
    Abstract: A method for reducing beverage loss during loading of beverage into an ethanol concentration system having a set of reverse osmosis pressure vessels, each pressure vessel having a feed inlet, a retentate outlet, and a permeate outlet. The method includes feeding deaerated water into the feed inlet of a first pressure vessel, feeding the beverage into the feed inlet of the first pressure vessel, monitoring an alcohol percentage at the retentate outlet of a second pressure vessel, the second pressure vessel coupled directly or indirectly to the first pressure vessel, and coupling a retentate from the retentate outlet of the second pressure vessel to a feed tank coupled to the feed inlet of the first pressure vessel when the alcohol percentage is within a first target range of 0.5 to 18% alcohol-by-volume (ABV).
    Type: Application
    Filed: December 7, 2018
    Publication date: June 3, 2021
    Inventors: Ronan K. McGovern, Grace Connors, Adam M. Weiner
  • Patent number: 11007455
    Abstract: A multi-stage bubble-column vapor mixture condenser comprises at least a first stage and a second stage. Each stage includes a carrier-gas inlet and a carrier-gas outlet, as well as a condenser chamber containing a condensing bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet. The carrier-gas inlet is positioned to bubble carrier gas from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction above the condensing bath, wherein the first-stage carrier-gas outlet is in fluid communication with the carrier-gas inlet of the second stage to facilitate flow of the carrier gas through the condensing bath in the condenser chamber of the first stage and then through the condensing bath in the condenser chamber of the second stage.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: May 18, 2021
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa H. Elsharqawy
  • Publication number: 20200276541
    Abstract: A sanitary membrane cartridge for use in reverse osmosis filtering includes an outer housing, a central core tube, and a membrane leaf wound around the central core tube to form a cylindrical filter. The cartridge further includes a sealant layer disposed around the cylindrical filter to form a sealed filter, the sealed filter disposed within the housing. The sealant layer preferably has a surface roughness value, Ra, ranging from about 0.38 ?m to about 0.82 ?m. The cartridge further includes a brine seal, disposed between the sealant layer and the housing, having one or more notches formed on an outer diameter of the brine seal such that the feed flow through the notches allows bypass flow, between the sealant layer and the housing, of 1% to 25% of a total feed flow through the sealed filter.
    Type: Application
    Filed: November 6, 2018
    Publication date: September 3, 2020
    Inventors: Ronan K. McGovern, Ted Prato, Adam Weiner, Grace Connors, Robert Lederman
  • Publication number: 20200261849
    Abstract: Improved reverse osmosis (RO) systems include at least first and second stages wherein each stage has at least one RO membrane, each stage has a feed stream inlet, a permeate stream outlet, and a concentrate stream outlet, the feed stream inlet of the second stage is coupled to the concentrate stream outlet of the first stage, the second pressure is greater than the first pressure, and pressure exchangers associated with each of the first and second stages are configured to recover energy from the second stage concentrate stream. The systems include M reverse osmosis membranes in the first stage and N reverse osmosis membranes in the second stage, wherein M?N. The first pressure and second pressure are configured so that spatial variance in flux of the first stage permeate stream relative to flux of the second stage permeate stream is minimized.
    Type: Application
    Filed: March 30, 2020
    Publication date: August 20, 2020
    Inventors: Quantum J. Wei, Ronan K. McGovern, John H. Lienhard, V
  • Publication number: 20200261850
    Abstract: A reverse osmosis filtration system includes a set of two or more reverse osmosis pressure vessels coupled in series, each pressure vessel having one or more reverse osmosis membrane elements, a feed inlet, a retentate outlet, a permeate outlet. The pressure vessels are coupled so that each successive pressure vessel has (a) its feed inlet coupled to the retentate outlet of its preceding pressure vessel and (b) its permeate outlet coupled to the permeate outlet of its preceding pressure vessel. The permeate outlet of at least one pressure vessel includes a front permeate outlet and the permeate outlet of at least one other pressure vessel includes a back permeate outlet. The back permeate outlet of one pressure vessel is coupled to the front permeate outlet of a successive pressure vessel.
    Type: Application
    Filed: November 6, 2018
    Publication date: August 20, 2020
    Inventor: Ronan K. McGovern
  • Patent number: 10626037
    Abstract: An aqueous solution flows through a desalination system that separates the aqueous solution into purified water and concentrated brine. The concentrated brine is directed into an electrodialysis system that includes an anode and a cathode and at least two monovalent selective ion exchange membranes between the anode and the cathode. At least one of the monovalent selective ion exchange membranes separates at least one diluate channel from at least one concentrate channel in the electrodialysis system, and this membrane selectively allows at least one monovalent ion to pass through the membrane while blocking or inhibiting the transport therethrough of multi-valent ions. The concentrated brine flows through at least the concentrate channel while a voltage is applied to the anode and cathode; and additional aqueous solution flows through the diluate channel.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: April 21, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: John H. Lienhard, Kishor Govind Nayar, Ronan K. McGovern, Bader Al-Anzi
  • Patent number: 10561987
    Abstract: Concentration control in filtration systems and associated methods are generally described. Streams originating from upstream filters and having similar concentrations of a target minor component and/or similar osmotic pressures can be mixed and subsequently filtered within additional filters. Certain embodiments comprise recycling an output stream produced by a filter to a filter feed stream, wherein the output stream and the filter feed stream have similar concentrations of a target minor component and/or similar osmotic pressures. Such strategic mixing and/or recycling can reduce the amount of energy and/or the amount of filtration medium surface area required to achieve a desired concentration of the target minor component in a final product stream.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: February 18, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Ronan K. McGovern, John H. Lienhard, V
  • Publication number: 20190282922
    Abstract: A multi-stage bubble-column vapor mixture condenser comprises at least a first stage and a second stage. Each stage includes a carrier-gas inlet and a carrier-gas outlet, as well as a condenser chamber containing a condensing bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet. The carrier-gas inlet is positioned to bubble carrier gas from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction above the condensing bath, wherein the first-stage carrier-gas outlet is in fluid communication with the carrier-gas inlet of the second stage to facilitate flow of the carrier gas through the condensing bath in the condenser chamber of the first stage and then through the condensing bath in the condenser chamber of the second stage.
    Type: Application
    Filed: May 7, 2019
    Publication date: September 19, 2019
    Applicants: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa H. Elsharqawy
  • Patent number: 10392270
    Abstract: A multi-effect membrane distillation system includes first and second membrane distillation effects. Each effect (stage) includes a feed channel, a gap, and a vapor-permeable membrane separating the feed channel from the gap. A liquid feed is fed into the feed channel of the first effect via a feed inlet, and the liquid feed is extracted from the first-stage feed channel via a first feed-transfer conduit that delivers the liquid feed to the second-stage feed channel. The feed is extracted from the second-stage feed channel via a second feed-transfer conduit. At least one permeate-extraction conduit is coupled with the first-stage and second-stage gaps and is configured to extract permeate (e.g., pure water) therefrom.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: August 27, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Jaichander Swaminathan, Ronan K. McGovern, Hyung-Won Chung, David Elan-Martin Warsinger, John H. Lienhard
  • Publication number: 20190062189
    Abstract: An aqueous solution flows through a desalination system that separates the aqueous solution into purified water and concentrated brine. The concentrated brine is directed into an electrodialysis system that includes an anode and a cathode and at least two monovalent selective ion exchange membranes between the anode and the cathode. At least one of the monovalent selective ion exchange membranes separates at least one diluate channel from at least one concentrate channel in the electrodialysis system, and this membrane selectively allows at least one monovalent ion to pass through the membrane while blocking or inhibiting the transport therethrough of multi-valent ions. The concentrated brine flows through at least the concentrate channel while a voltage is applied to the anode and cathode; and additional aqueous solution flows through the diluate channel.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 28, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: John H. Lienhard, Kishor Govind Nayar, Ronan K. McGovern, Bader Al-Anzi
  • Publication number: 20180161727
    Abstract: Concentration control in filtration systems and associated methods are generally described. Streams originating from upstream filters and having similar concentrations of a target minor component and/or similar osmotic pressures can be mixed and subsequently filtered within additional filters. Certain embodiments comprise recycling an output stream produced by a filter to a filter feed stream, wherein the output stream and the filter feed stream have similar concentrations of a target minor component and/or similar osmotic pressures. Such strategic mixing and/or recycling can reduce the amount of energy and/or the amount of filtration medium surface area required to achieve a desired concentration of the target minor component in a final product stream.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 14, 2018
    Inventors: Ronan K. McGovern, John H. Lienhard, V
  • Patent number: 9925494
    Abstract: Concentration control in filtration systems and associated methods are generally described. Streams originating from upstream filters and having similar concentrations of a target minor component and/or similar osmotic pressures can be mixed and subsequently filtered within additional filters. Certain embodiments comprise recycling an output stream produced by a filter to a filter feed stream, wherein the output stream and the filter feed stream have similar concentrations of a target minor component and/or similar osmotic pressures. Such strategic mixing and/or recycling can reduce the amount of energy and/or the amount of filtration medium surface area required to achieve a desired concentration of the target minor component in a final product stream.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: March 27, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Ronan K. McGovern, John H. Lienhard, V
  • Publication number: 20170014773
    Abstract: A multi-effect membrane distillation system includes first and second membrane distillation effects. Each effect (stage) includes a feed channel, a gap, and a vapor-permeable membrane separating the feed channel from the gap. A liquid feed is fed into the feed channel of the first effect via a feed inlet, and the liquid feed is extracted from the first-stage feed channel via a first feed-transfer conduit that delivers the liquid feed to the second-stage feed channel. The feed is extracted from the second-stage feed channel via a second feed-transfer conduit. At least one permeate-extraction conduit is coupled with the first-stage and second-stage gaps and is configured to extract permeate (e.g., pure water) therefrom.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 19, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Jaichander Swaminathan, Ronan K. McGovern, Hyung-Won Chung, David Elan-Martin Warsinger, John H. Lienhard
  • Publication number: 20160271518
    Abstract: A multi-stage bubble-column vapor mixture condenser comprises at least a first stage and a second stage. Each stage includes a carrier-gas inlet and a carrier-gas outlet, as well as a condenser chamber containing a condensing bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet. The carrier-gas inlet is positioned to bubble carrier gas from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction above the condensing bath, wherein the first-stage carrier-gas outlet is in fluid communication with the carrier-gas inlet of the second stage to facilitate flow of the carrier gas through the condensing bath in the condenser chamber of the first stage and then through the condensing bath in the condenser chamber of the second stage.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Applicants: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa H. Elsharqawy